Acwing-石子合并

本文介绍了如何使用区间动态规划(区间DP)解决石子合并问题,给出了一段C++代码示例,展示了如何通过构建状态转移方程找到合并两个区间以最小化总代价的方法。
摘要由CSDN通过智能技术生成

282. 石子合并 - AcWing题库

所需知识:区间dp

区间dp模板题。

区间dp常用模板:

for (int len = 1; len <= n; len++) {         // 遍历区间的长度
    for (int i = 1; i + len - 1 <= n; i++) { // 枚举区间起点
        int j = i + len - 1;                 // 区间的终点
        if (len == 1) {
            dp[i][j] = 初始值
            continue;
        }
        for (int k = i; k < j; k++) {        // 枚举中间点,构造状态转移方程
            dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);
        }
    }
}

思路:考虑最后一次合并,一定是将两个已知的区间(区间合并的最优方案已被计算出来)合并,即只需将端点枚举一遍,判断哪个中间点可以将整个区间划分为两个小区间,使得两个区间合并的代价最小。

首先将dp[1][j]初始化为0(即区间长度为1的任何区间的代价都为0);之后外层枚举每一个区间长度,内层枚举区间左端点,依次递推即可求出答案。

C++代码:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

int N;
int dp[310][310];
int w[310],s[310];
int main()
{
    cin>>N;
    memset(dp,0x3f,sizeof dp);
    for (int i = 1; i <= N; i ++ ){
        cin>>w[i];
        s[i]=s[i-1]+w[i];
    }
    for (int len = 1; len <= N; len ++ ){
        for (int i = 1; i+len-1<= N; i ++ ){
            int j=len+i-1;
            if(len==1)
            dp[i][j]=0;
            for (int k = i; k < j; k ++ )
            dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+s[j]-s[i-1]);
        }
    }
    cout<<dp[1][N];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值