关于字典

本文探讨了信号处理中用于图像或其他信号去噪、修复、稀疏表示的两种字典类型:稀疏编码学习字典和卷积字典。前者通过过完备地整合同性质特征,形成复杂几何结构的高频成分,后者则从整体出发,不仅学习简单特征,还能学习更复杂的特征,从而产生具有优势的字典。
摘要由CSDN通过智能技术生成

  • 在信号处理中,字典有2种,不同字典为图像或其他信号去噪、修复、稀疏表示具有不同意义。


稀疏编码学习字典模拟简单神经元感知域响应最求过完备的,把同性质(同朝向特征)的特征但不同位置响应特征融入字典中,致使字典过于庞大,学习特征仅仅是简单几何结构,特征代表高频成份;

卷积字典,从整体出发学习的特征,特征由滤波器表示,具有平移不变形,学习过程中,学习简单特征外,还可以学习复杂特征。这种方法产生的字典,有较多的优势.

  • 建立稀疏特征选择(structured sparsity)字典学习/结构化字典
为了学习复杂细胞属性的特征,根据复杂细胞属性的特点,把学习的特征或滤波器进行分组,即将具有相似或相关性的特征、滤波器分为一组,由每组简单细胞检测到的特征之后组合产生不变描述符

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值