模拟赛-20190115-permutation

1 篇文章 0 订阅

题目相关

题目链接

题目大意

给定 n n n q q q组询问,每组询问包含 x , y x,y x,y,求满足条件的排列 a a a数量
条件1: m a x ( a 1 , a 2 ⋅ ⋅ ⋅ a y ) = a y max(a_1,a_2···a_y)=a_y max(a1,a2ay)=ay
条件2: 2 a x &lt; a y 2a_x&lt;a_y 2ax<ay

数据范围

1 ≤ n , q ≤ 1000000 , 1 ≤ x &lt; y ≤ n 1\le n,q\le1000000,1\le x&lt;y\le n 1n,q1000000,1x<yn

题解

这题的 Θ ( n l o g n ) \Theta(nlogn) Θ(nlogn)算法不能过
首先发现, x x x的值无论如何变化答案相同(可以把 x x x位看成特殊位)
我们发现直接求并不好做,我们考虑这样一件事情:
如果题目的条件2改为 2 a x &gt; a y 2a_x&gt;a_y 2ax>ay,那么答案不变
为什么?
我们发现,当 a y a_y ay确定的时候,对于满足 k &lt; a y k&lt;a_y k<ay的数,满足 2 k &lt; a y 2k&lt;a_y 2k<ay和满足 2 k &gt; a y 2k&gt;a_y 2k>ay的数是一样多的,所以答案也是一样的
A l e s s A_{less} Aless为条件2为 2 a x &lt; a y 2a_x&lt;a_y 2ax<ay时的答案(即我们要求的),
A m o r e A_{more} Amore为条件2为 2 a x &gt; a y 2a_x&gt;a_y 2ax>ay时的答案,
A e q u a l A_{equal} Aequal为条件2为 2 a x = a y 2a_x=a_y 2ax=ay时的答案,
A n o n e A_{none} Anone为条件2没有时的答案,
容易发现 A n o n e = ( n y ) ( y − 1 ) ! ( n − y ) ! = n ! y ! ( n − y ) ! ( y − 1 ) ! ( n − y ) ! = n ! y A_{none}=\binom{n}{y}(y-1)!(n-y)!=\frac{n!}{y!(n-y)!}(y-1)!(n-y)!=\frac{n!}y Anone=(yn)(y1)!(ny)!=y!(ny)!n!(y1)!(ny)!=yn!
(即取出 y y y个数,把最大值作为 a y a_y ay,再枚举前后的摆放方式,当然也可以用其它方法推)
并且 A l e s s + A m o r e + A e q u a l = A n o n e A_{less}+A_{more}+A_{equal}=A_{none} Aless+Amore+Aequal=Anone
由于我们知道 A l e s s = A m o r e A_{less}=A_{more} Aless=Amore
所以 A l e s s = A n o n e − A e q u a l 2 A_{less}=\frac{A_{none}-A_{equal}}{2} Aless=2AnoneAequal
考虑如何求 A e q u a l A_{equal} Aequal
g i g_i gi y = i y=i y=i a 1 ⋅ ⋅ ⋅ a y a_1···a_y a1ay的选择方案数
容易发现 A e q u a l = g y ( y − 2 ) ! ( n − y ) ! A_{equal}=g_y(y-2)!(n-y)! Aequal=gy(y2)!(ny)!
考虑怎么求 g i g_i gi
g i = ∑ j = 1 ⌊ n 2 ⌋ ( 2 j − 2 i − 2 ) = ∑ j = 0 ⌊ n 2 ⌋ − 1 ( 2 j i ) \begin{aligned} g_i&amp;=\sum_{j=1}^{\left\lfloor \frac n2\right\rfloor}\binom{2j-2}{i-2}\\ &amp;=\sum_{j=0}^{\left\lfloor \frac n2\right\rfloor-1}\binom{2j}{i} \end{aligned} gi=j=12n(i22j2)=j=02n1(i2j)
我们将其一般化
假设给定 m m m
现在要求的是 f n = ∑ i = 0 m ( 2 i n ) f_n=\sum_{i=0}^m\binom{2i}{n} fn=i=0m(n2i)
根据经典性质 ( n m ) = ( n − 1 m ) + ( n − 1 m − 1 ) \binom nm=\binom{n-1}m+\binom{n-1}{m-1} (mn)=(mn1)+(m1n1)
我们可以将 f f f进行一些转化
f n = ∑ i = 0 m ( 2 i n ) = ∑ i = 0 m ( ( 2 i − 1 n − 1 ) + ( 2 i − 1 n ) ) = ∑ i = 0 m ( 2 i − 1 n − 1 ) + ∑ i = 0 m ( 2 i − 1 n ) \begin{aligned} f_n&amp;=\sum_{i=0}^m\binom{2i}{n}\\ &amp;=\sum_{i=0}^m(\binom{2i-1}{n-1}+\binom{2i-1}{n})\\ &amp;=\sum_{i=0}^m\binom{2i-1}{n-1}+\sum_{i=0}^m\binom{2i-1}{n}\\ \end{aligned} fn=i=0m(n2i)=i=0m((n12i1)+(n2i1))=i=0m(n12i1)+i=0m(n2i1)
列出组合数的一个经典式子(我们发现这个式子和我们要求的 f f f非常像
∑ i = x y ( i x ) = ( y + 1 x + 1 ) \sum_{i=x}^y\binom{i}{x}=\binom{y+1}{x+1} i=xy(xi)=(x+1y+1)
将两个 f n f_n fn相加
2 f n = ∑ i = 0 m ( 2 i − 1 n − 1 ) + ∑ i = 0 m ( 2 i − 1 n ) + ∑ i = 0 m ( 2 i n ) = ∑ i = 0 m ( 2 i − 1 n − 1 ) + ∑ i = 0 m ( 2 i − 1 n ) + ∑ i = 0 m ( 2 i n ) + f n − 1 − f n − 1 = ∑ i = 0 m ( 2 i − 1 n − 1 ) + ∑ i = 0 m ( 2 i n − 1 ) + ∑ i = 0 m ( 2 i − 1 n ) + ∑ i = 0 m ( 2 i n ) − f n − 1 = ∑ i = 0 2 m ( i n − 1 ) + ∑ i = 0 2 m ( i n ) − f n − 1 = ( 2 m + 1 n ) + ( 2 m + 1 n + 1 ) − f n − 1 = ( 2 m + 2 n + 1 ) − f n − 1 \begin{aligned} 2f_n&amp;=\sum_{i=0}^m\binom{2i-1}{n-1}+\sum_{i=0}^m\binom{2i-1}{n}+\sum_{i=0}^m\binom{2i}{n}\\ &amp;=\sum_{i=0}^m\binom{2i-1}{n-1}+\sum_{i=0}^m\binom{2i-1}{n}+\sum_{i=0}^m\binom{2i}{n}+f_{n-1}-f_{n-1}\\ &amp;=\sum_{i=0}^m\binom{2i-1}{n-1}+\sum_{i=0}^m\binom{2i}{n-1}+\sum_{i=0}^m\binom{2i-1}{n}+\sum_{i=0}^m\binom{2i}{n}-f_{n-1}\\ &amp;=\sum_{i=0}^{2m}\binom i{n-1}+\sum_{i=0}^{2m}\binom i{n}-f_{n-1}\\ &amp;=\binom{2m+1}{n}+\binom{2m+1}{n+1}-f_{n-1}\\ &amp;=\binom{2m+2}{n+1}-f_{n-1}\\ \end{aligned} 2fn=i=0m(n12i1)+i=0m(n2i1)+i=0m(n2i)=i=0m(n12i1)+i=0m(n2i1)+i=0m(n2i)+fn1fn1=i=0m(n12i1)+i=0m(n12i)+i=0m(n2i1)+i=0m(n2i)fn1=i=02m(n1i)+i=02m(ni)fn1=(n2m+1)+(n+12m+1)fn1=(n+12m+2)fn1
容易发现 m = ⌊ n 2 ⌋ − 1 m=\left\lfloor \frac n2\right\rfloor-1 m=2n1
所以 g x = ( 2 ⌊ n 2 ⌋ x + 1 ) − g x − 1 2 g_x=\frac{\binom{2\left\lfloor \frac n2\right\rfloor}{x+1}-g_{x-1}}2 gx=2(x+122n)gx1
直接递推即可,预处理组合数,算法总复杂度 Θ ( n ) \Theta(n) Θ(n)

代码

贴上AC代码

#include<cstdio>
#include<cctype>
namespace fast_IO
{
	const int IN_LEN=10000000,OUT_LEN=10000000;
	char ibuf[IN_LEN],obuf[OUT_LEN],*ih=ibuf+IN_LEN,*oh=obuf,*lastin=ibuf+IN_LEN,*lastout=obuf+OUT_LEN-1;
	inline char getchar_(){return (ih==lastin)&&(lastin=(ih=ibuf)+fread(ibuf,1,IN_LEN,stdin),ih==lastin)?EOF:*ih++;}
	inline void putchar_(const char x){if(oh==lastout)fwrite(obuf,1,oh-obuf,stdout),oh=obuf;*oh++=x;}
	inline void flush(){fwrite(obuf,1,oh-obuf,stdout);}
}
using namespace fast_IO;
#define getchar() getchar_()
#define putchar(x) putchar_((x))
typedef long long ll;
#define rg register
template <typename T> inline T max(const T a,const T b){return a>b?a:b;}
template <typename T> inline T min(const T a,const T b){return a<b?a:b;}
template <typename T> inline void mind(T&a,const T b){a=a<b?a:b;}
template <typename T> inline void maxd(T&a,const T b){a=a>b?a:b;}
template <typename T> inline T abs(const T a){return a>0?a:-a;}
template <typename T> inline void swap(T&a,T&b){T c=a;a=b;b=c;}
template <typename T> inline void swap(T*a,T*b){T c=a;a=b;b=c;}
template <typename T> inline T gcd(const T a,const T b){if(!b)return a;return gcd(b,a%b);}
template <typename T> inline T square(const T x){return x*x;};
template <typename T> inline void read(T&x)
{
    char cu=getchar();x=0;bool fla=0;
    while(!isdigit(cu)){if(cu=='-')fla=1;cu=getchar();}
    while(isdigit(cu))x=x*10+cu-'0',cu=getchar();
    if(fla)x=-x;  
}
template <typename T> void printe(const T x)
{
    if(x>=10)printe(x/10);
    putchar(x%10+'0');
}
template <typename T> inline void print(const T x)
{
    if(x<0)putchar('-'),printe(-x);
    else printe(x);
}
const int maxn=1000001,mod=998244353;
int fac[maxn],ifac[maxn],inv[maxn];
inline int pow(int x,int y)
{
	int res=1;
	for(;y;y>>=1,x=(ll)x*x%mod)if(y&1)res=(ll)x*res%mod;
	return res;
}
inline int C(const int x,const int y)
{
	return (ll)fac[x]*ifac[y]%mod*ifac[x-y]%mod;
}
int n,q,f[maxn];
int main()
{
	fac[0]=1;
	for(rg int i=1;i<=1000000;i++)fac[i]=(ll)fac[i-1]*i%mod;
	ifac[1000000]=pow(fac[1000000],mod-2);
	inv[0]=1;
	for(rg int i=1000000;i>=1;i--)ifac[i-1]=(ll)ifac[i]*i%mod,inv[i]=(ll)ifac[i]*fac[i-1]%mod;
	read(n),read(q);
	const int INV=inv[2];
	f[0]=n>>1;
	const int P=(n>>1)<<1;
	for(rg int i=1;i<=n;i++)f[i]=(ll)INV*(C(P,i+1)+mod-f[i-1])%mod;
	while(q--)
	{
		int x,y;read(x),read(y);
		print(((ll)fac[n]*inv[y]+mod-(ll)f[y-2]*fac[n-y]%mod*fac[y-2]%mod)%mod*INV%mod),putchar('\n');
	}
	return flush(),0;
}

总结

常数极小,稳稳的过
弱弱的推式子题(为何很多人都懒得自己推啊),转化问题很巧妙

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值