学习记录
zhouyuheng2003
不要害怕落日的黑暗,因为明天的太阳还会照常升起
展开
-
不平等博弈问题学习记录(一)(超实数篇)
听到博弈问题,第一个想到的想必是用SG函数做的博弈题,就比如Nim游戏 Nim游戏:有N堆石子,每次选一堆石子,拿走若干石子(不能不取),先不能取的人输定义个SG函数 对于SG函数,大致就记录两个东西吧 定义SG函数g(x)=mex{ g(y) | y是x的后继 } 游戏的和的SG函数值是它的所有子游戏的SG函数值的异或SG函数能解决很多问题,但是它并不是万能的(我今天才知道,逃原创 2017-12-30 20:32:35 · 1603 阅读 · 1 评论 -
不平等博弈问题学习记录(二)(对于超实数在博弈下左右相等的扩充)
在上一篇文章中,定义了{l|r}这个运算 但是,还有很多的特殊情况没有考虑过,就比如说,在{L|R}的运算中,L或R为空集怎么办,那么这个这个空集就可以用Φ\Phi表示,不过一般可以用不写任何东西来表示,比如说|=0{|}=0,可以当做无穷(如果是左边是空集,那么可以视为是无穷小,如果右边是空集,那么可以视为是无穷大) 另外,当l=r=0的时候呢,两个子状态都是先手必败态,那么答案是什么呢,那很原创 2018-01-01 21:07:29 · 361 阅读 · 0 评论 -
不平等博弈问题学习记录(三)(对于超实数在博弈下左大右小以及多堆情况的扩充)
今天写的这一篇文章离写第一篇文章的时间可能有几天了,并且在这段时间里也有人向我提出了我错误的地方,现已作更改。 今天,我们又做到了一道题目,也是不平等博弈的,听了讲题,我对不平等博弈有了更深的理解。 首先,不平等博弈,或者说是一个游戏,一直以来我觉得都可以用超实数来做,但今天我发现,其实超实数其实是一种数,这种游戏的状态不等价于超实数,就比如*符号,这个就不是超实数,所以这些东西都是超实数的扩充原创 2018-01-04 21:07:42 · 683 阅读 · 0 评论 -
第一类斯特林数学习记录
最近做题有时会碰到斯特林数(Stirling数),就觉得好好的学习一番,于是呢,写下这篇博客,来记录一些知识简单介绍 第一类斯特林数表示表示将 n 个不同元素构成m个圆排列的数目。——百度百科第一类斯特林数,可以表示为s(n,m)s(n,m),注意这里是小写 ,要与大写的第二类斯特林数区分开来,定义上面也讲到了,但是呢,其实那句话最好改成第一类斯特林数的绝对值,因为第一类斯原创 2018-01-10 18:28:19 · 977 阅读 · 0 评论