[bzoj1547]周末晚会

3 篇文章 0 订阅
1 篇文章 0 订阅

前言

这是一道Burnside引理的应用题

题目相关

链接

题目大意

一个长度为 n n n 01 01 01圈,没有超过 k k k个的连续的 1 1 1,求方案数

数据范围

T ≤ 50 , n ≤ 2000 , k ≤ 2000 T\le50,n\le2000,k\le2000 T50,n2000,k2000

题解

我们设 f i f_i fi表示不含超过 k k k个连续 1 1 1的长度为 i i i的链的数量
我们考虑求 f i f_i fi,用所有方案减去不合法方案数,对于一个长度为 i − 1 i-1 i1的不合法方案,其后面再加上一个数字,其依然不合法,然后我们考虑因为加入最后一位而不合法的串,一定是最后 k + 1 k+1 k+1位是 1 1 1,倒数第 k + 2 k+2 k+2位是 0 0 0,并且其它位合法,那么直接递推即可

我们设 h i h_i hi表示长度为 i i i、包含至少一个 0 0 0、不含超过连续 k k k 1 1 1的环的数量(固定 1 1 1号点)
先不说要如何计算

我们考虑答案,我们列出Burnside引理的式子
l = 1 ∣ G ∣ ∑ a i ∈ G c 1 ( a i ) l=\frac{1}{|G|}\sum_{a_i\in G}c_1(a_i) l=G1aiGc1(ai)
我们发现对于所有置换(即所有 0 ≤ i &lt; n 0\le i&lt;n 0i<n,转动 i i i次),其 c ( a i ) c(a_i) c(ai)刚好是最小整除周期是 i i i的因数的方案数,实际操作的时候我们发现 c ( a i ) = h g c d ( i , n ) c(a_i)=h_{gcd(i,n)} c(ai)=hgcd(i,n)

我们考虑如何求 h i h_i hi,我们发现我们可以在一条链的两端连上 01 ⋅ ⋅ ⋅ 10 01···10 0110形式的一串(其中 1 1 1的数量要小于等于 k k k),我们枚举 1 1 1的数量至少为几,我们再枚举接入的位置,我们发现,插入的元素越多,方案越多
我们设原串为 X X X,插入的 i i i 1 1 1在头与尾的串分别为 A A A B B B,我们发现,最后一定是“ A 0 X 0 B A0X0B A0X0B”的形式,我们发现若 1 1 1的个数为 i i i,那么就有 i + 1 i+1 i+1种方案
那么我们考虑对 f f f进行前缀和,并且对于所有 i i i直接转移选 i i i~ k k k个的方案,那么 i i i个的方案就会被转移到 i + 1 i+1 i+1次,即可

我们发现只有 i i i n n n的因数时, h i h_i hi是要求的,直接 d p dp dp一个 h i h_i hi i ≤ k i\le k ik的时候是 O ( 1 ) \mathcal O(1) O(1)的, i &gt; k i&gt;k i>k的时候是 O ( k ) \mathcal O(k) O(k)的,那么总复杂度为
O ( ∑ i &gt; k , i ∣ n k ) \mathcal O\left(\sum_{i&gt;k,i|n}k\right) Oi>k,ink
我们设大于 k k k且是 n n n的因数的数有 x x x个,容易发现 n n n的因数从大到小排,第 j j j个的值小于等于 n j \frac nj jn,那么 k ≤ n x k\le\frac nx kxn,那么 x ∗ k ≤ n x*k\le n xkn,即直接 d p dp dp O ( n ) \mathcal O(n) O(n)

另外,我们发现对于所有 c ( a i ) c(a_i) c(ai)的求和可以枚举j=gcd(i,n),那么贡献次数就是 φ ( n i ) \varphi(\frac ni) φ(in),我们可以通过线性筛筛 φ \varphi φ,并且枚举 j j j,这样就可以做到 O ( n ) \mathcal O(n) O(n)的复杂度

综上,总复杂度 O ( n ) \mathcal O(n) O(n)

代码

#include<bits/stdc++.h>
typedef long long ll;
#define rg register
template <typename T> inline void read(T&x){char cu=getchar();x=0;bool fla=0;while(!isdigit(cu)){if(cu=='-')fla=1;cu=getchar();}while(isdigit(cu))x=x*10+cu-'0',cu=getchar();if(fla)x=-x;}
template <typename T> inline void printe(const T x){if(x>=10)printe(x/10);putchar(x%10+'0');}
template <typename T> inline void print(const T x){if(x<0)putchar('-'),printe(-x);else printe(x);}
template <typename T> inline T gcd(const T a,const T b){if(!b)return a;return gcd(b,a%b);}
const int maxn=2001;
const ll mod=100000007;
inline int pow(int x,int y)
{
    int res=1;
    for(;y;y>>=1,x=(ll)x*x%mod)if(y&1)res=(ll)res*x%mod;
    return res;
}
inline void md(int&x){if(x>=mod)x-=mod;}
inline int Md(const int x){return x>=mod?x-mod:x;}
int n,k,bit[maxn],F[maxn+5],*f=F+5,h[maxn],sum;
ll T,ans;
bool isprime[maxn];int prime[maxn],primesize,phi[maxn];
inline void getphi(const int size)
{
	phi[1]=1;
	memset(isprime,1,sizeof(isprime));
	for(rg int i=2;i<=size;i++)
	{
		if(isprime[i])prime[++primesize]=i,phi[i]=i-1;
		for(rg int j=1;j<=primesize&&(ll)prime[j]*i<=size;j++)
		{
			isprime[prime[j]*i]=0;
			if(i%prime[j]==0)
			{
				phi[prime[j]*i]=phi[i]*prime[j];
				break;
			}
			phi[prime[j]*i]=phi[i]*(prime[j]-1);
		}
	}
}
int main()
{
//  freopen("party.in","r",stdin),freopen("party.out","w",stdout);
    bit[0]=1;
    for(rg int i=1;i<=2000;i++)bit[i]=Md(bit[i-1]<<1);
    getphi(2000);
    read(T);
    while(T--)
    {
		read(n),read(k);
		if(k>n)k=n;
		sum=0,ans=0;
		memset(F,0,sizeof(F));
		memset(h,0,sizeof(h));
	    for(rg int i=0;i<=k;i++)f[i]=bit[i];
	    f[-1]=1;
	    for(rg int i=k+1;i<=n;i++)
	    {
	        sum=Md(Md(sum<<1)+f[i-k-2]);
	        f[i]=Md(bit[i]-sum+mod);
	    }
	    for(rg int i=0;i<=n;i++)f[i]=Md(f[i]+f[i-1]);
	    for(rg int i=1;i<=n;i++)
	    	if(n%i==0)
	        {
	            if(i<=k)h[i]=bit[i]-1;
	            else for(rg int j=0;j<=k;j++)h[i]=Md(Md(h[i]+f[i-j-2])+mod-f[i-k-3]);
	            ans+=(ll)h[i]*phi[n/i]%mod;
	        }
	    print(((ans%mod+mod)*pow(n,mod-2)+(n==k))%mod),putchar('\n');
	}
    return 0;
}

总结

Burnside引理知道就好
主要是要求的东西会求
优化复杂度大法好

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值