bzoj1922: [Sdoi2010]大陆争霸

传送门
我们假设d1[i]表示机器人到达i的最短时间
d2[i]为结界消失的最短时间
则一个点可以被访问到的最短时间为max(d1[i],d2[i])
我们跑一遍最短路
等到该节点满足条件就向外扩展

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#define ll int
#define N 3005
using namespace std;
struct edge{
    int to,val,next;
}e[70005];
ll g[N][N],d1[N],d2[N],d[N],p[N],head[N];
ll n,m,x,y,z,k,tot,v[N];
inline ll read(){
    ll k=0;
    char ch=getchar();
    for (;ch<'0'||ch>'9';ch=getchar());
    for (;ch>='0'&&ch<='9';ch=getchar()) k=k*10+ch-48;
    return k;
}
inline void ins(int x,int y,int u){
    e[++tot].to=y;
    e[tot].val=u;
    e[tot].next=head[x];
    head[x]=tot;
}
int main(){
    n=read();
    m=read();
    for (int i=1;i<=m;i++){
        x=read();
        y=read();
        z=read();
        ins(x,y,z);
    }
    for (int i=1;i<=n;i++){
        x=read();
        p[i]=x;
        for (int j=1;j<=x;j++){
            y=read();
            g[y][i]=1;
        }
    }
    memset(d1,120,sizeof(d1));
    memset(d,120,sizeof(d));
    d1[1]=d2[1]=d[1]=0;
    v[1]=1;
    for (int i=1;i<=n;i++){
        k=0;
        ll mi=2100000000;
        for (int j=1;j<=n;j++)
            if (v[j]==1&&d[j]<mi){
                k=j;
                mi=d[j];
            }
        v[k]=2;
        for (int j=1;j<=n;j++)
            if (g[k][j]&&v[j]!=2){
                p[j]--;
                d2[j]=max(d2[j],d[k]);
                if (!p[j]&&d1[j]<2100000000){
                    v[j]=1;
                    d[j]=max(d1[j],d2[j]);
                }
            }
        for (int j=head[k];j;j=e[j].next)
            if (v[e[j].to]!=2){
                d1[e[j].to]=min(d1[e[j].to],d[k]+e[j].val);
                if (!p[e[j].to]){
                    v[e[j].to]=1;
                    d[e[j].to]=max(d1[e[j].to],d2[e[j].to]);
                }
            }
    }
    printf("%d",d[n]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值