用python完成《商务与经济统计(第13版)》课后练习——第7章和第8章

本文使用Python对《商务与经济统计》第7章和第8章的课后练习进行解答,涉及数据预处理、统计分析等步骤。包括晨星股票评级分析、芝加哥旅行税的置信区间估计以及《银河护卫队》票房收入的统计推断。通过数据转换和计算,解决了股票比率估计、旅行税区间估计以及电影票房相关问题。
摘要由CSDN通过智能技术生成

这次作业练习收获挺多,难的不是练习题,而是在计算前的数据预处理。本来以为可以很快解决的,还是花了些力气,看来还是要多练习~

chapter7-14题

晨星公布了1208家企业的股票信息数据(晨星官网,2012年10月24日)。这些股票中的40只组成一个样本,存放在数据文件Morningstar.csv 中,利用Morningstar数据集回答下列问题。
1.求晨星股票中达到最高评级5星的股票所占比率的点估计。
2.求晨星股票中商业风险评级高于平均水平的股票所占比率的点估计。
3.求晨星股票中评级不高于2星的股票所占比率的点估计。

数据预处理

import pandas as pd
import numpy as np

##读取数据
ms = pd.read_csv("/myfile/个人事务/数据分析学习/商务与经济统计/数据文件/第7章/Morningstar.csv",sep=",")
ms.head(10)

在这里插入图片描述
星级和风险水平都是字符串的形式,为了方便计算先转换成数值型

ms_star = ms["Morningstar Rating "]
# 将星级中的数字提取出来

## 自定义函数将字符串中的数字提取出来
def star_rated(star_str):
    star_num = filter(str.isdigit, star_str)
    star_num = list(star_num)
    s = int(star_num[0])
    return s

star = [star_rated(i) for i in ms_star]
ms["star"] = star

# 将风险水平用数值进行替换
## Average = 0,Above Average = 1,Below Average = -1
def risk_num(risk_str):
    if risk_str 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值