统计学之参数估计
统计方法

参数估计概览

估计量与估计值
估计量:用于估计总体参数的随机变量
估计值:估计参数时计算出来的统计量的具体值
参数点估计
用样本的估计量的某个取值直接作为总体参数的估计值
例如:用样本均值直接作为总体均值的估计;
用两个样本均值之差直接作为总体均值之差的估计。
无法给出估计值接近总体参数程度的信息
虽然在重复抽样条件下,点估计的均值可望等于总体真值,但由于样本是随机的,抽出一个具体的样本得到的估计值很可能不同于总体真值。
一个点估计量的可靠性是由它的抽样标准误差来衡量的,这表明一个具体的点估计值无法给出估计的可靠性的度量。
矩估计法
借助样本矩去估计总体的矩,得到总体相应的未知参数的估计值。
1 .用样本的一阶原点矩来估计总体的均值μ
2 .用样本的二阶中心矩来估计总体的方差σ2
极大似然估计法
点估计的评价准则(无偏性一致性有效性)
无偏性
估计量抽样分布的数学期望等于被估计的总体参数
无偏估计指的是所有可能样本估计值的数学期望等于待估总体参数
有效性
对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效
一致性
随着样本量的增大,估计量的值越来越接近被估计的总体参数
区间估计
在点估计的基础上,给出总体参数估计的一个区间范围,该区间由样本统计量加减抽样误差而得到的。
根据样本统计量的抽样分布能够对样本统计量与总体参数的接近程度给出一个概率