西瓜书+实战+吴恩达机器学习(四)监督学习之线性回归 Linear Regression

如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~

0. 前言

线性回归试图学得一个线性模型以尽可能准确的预测实值输出。

f ( x ) = w T x + b f(x)=w^Tx+b f(x)=wTx+b
其中, x x x为多元向量, w w w为权重向量, b b b为偏置。

1. 线性回归参数求解方法

梯度下降法:定义代价函数(例如:均方误差),按照梯度方向修改参数以最快降低代价函数, w j = w j − α 1 m ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) x j ( i ) w_j=w_j-\alpha\frac{1}{m}\sum_{i=1}^m(\hat{y}^{(i)}-y^{(i)})x_j^{(i)} wj=wjαm1i=1m(y^(i)y(i))xj(i)

正规方程:通过 w ^ = ( X T X ) − 1 X T y \hat{w}=(X^TX)^{-1}X^Ty w^=(XTX)1XTy直接求解,当矩阵不可逆时(多发生在 n ⩾ m n\geqslant m nm时),可删除冗余的特征或采用正则化。

矩阵逆运算的时间复杂度通常为 O ( n 3 ) O(n^{3}) O(n3),所以当 n 较大时,建议使用梯度下降。

2. 线性回归正则化

2.1. 岭回归

L2范数正则化,又称作岭回归(ridge regression)。

正则化项表示为: λ ∥ w ∥ 2 2 \lambda\left\|w\right\|_2^2 λw22,对应正规方程表示为: w ^ = ( X T X + λ I ) − 1 X T y \hat{w}=(X^TX+\lambda I)^{-1}X^Ty w^=(XTX+λI)1XTy

2.2. LASSO

L1范数正则化,又称作LASSO(Least Absolute Shrinkage and Selection Operator)。

正则化项表示为: λ ∥ w ∥ 1 \lambda \left\|w\right\|_1 λw1

L1范数正则化比L2范数正则化更容易获得稀疏解

3. 局部加权线性回归

局部加权线性回归(Locally Weighted Linear Regression)给待测点附近的每个点赋予一定的权值

高斯核函数表示为: w ( i , i ) = exp ⁡ ( − ∥ x ( i ) − x ∥ 2 2 σ 2 ) w(i,i)=\exp(-\frac{\left\|x^{(i)}-x\right\|^2}{2\sigma^2}) w(i,i)=exp(2σ2x(i)x2)

建立权值矩阵 W W W,只含对角线元素,则正规方程表示为: w ^ = ( X T W X ) − 1 X T W y \hat{w}=(X^TWX)^{-1}X^TWy w^=(XTWX)1XTWy

4. 广义线性模型

广义线性模型(generalized linear model)定义为:
y = g ( w T x + b ) y=g(w^Tx+b) y=g(wTx+b)
其中, g ( ⋅ ) g(\cdot) g()称为联系函数,对数线性回归 g ( ⋅ ) = exp ⁡ ( ⋅ ) g(\cdot)=\exp(\cdot) g()=exp()


如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值