西瓜书+实战+吴恩达机器学习(八)监督学习之朴素贝叶斯 Naive Bayes

本文介绍了朴素贝叶斯算法的基本原理,包括属性条件独立性假设以及如何计算概率。同时,文章探讨了半朴素贝叶斯算法,如ODE、SPODE、TAN和AODE,它们考虑了属性间的部分依赖信息,提供了更精确的概率估计。通过这些算法,可以提升分类效果。
摘要由CSDN通过智能技术生成

如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~

0. 前言

贝叶斯算法根据概率,选择概率最大的一类。

1. 朴素贝叶斯算法

朴素贝叶斯(naive Bayes)采用了属性条件独立性假设:对已知类别,假设所有属性相互独立。

P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(c\mid x)=\frac{P(c)P(x\mid c)}{P(x)}=\frac{P(c)}{P(x)}\prod_{i=1}^dP(x_i\mid c) P(cx)=P(x)P(c)P(xc)=P(x)P(c)i=1dP(xic)

  • P ( c ) P(c) P(c):类先验概率,表达了各类样本所占比例,根据大数定律,可通过频率估计概率
  • P ( x ∣ c ) P(x\mid c) P(xc):样本 x x x相对于类别 c c c的条件概率,根据假设,每个属性独立对结果影响
  • P ( x ) P(x) P(x):归一化证据因子,与类别标记无关

朴素贝叶斯的判定准则为:
h n b ( x ) = arg ⁡ max ⁡ c ∈ C P ( c ) ∏ i = 1 d P ( x i ∣ c ) h_{nb}(x)=\arg \max_{c\in C}P(c)\prod_{i=1}^dP(x_i\mid c) hnb(x)=arg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值