如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~
0. 前言
贝叶斯算法根据概率,选择概率最大的一类。
1. 朴素贝叶斯算法
朴素贝叶斯(naive Bayes)采用了属性条件独立性假设:对已知类别,假设所有属性相互独立。
P ( c ∣ x ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(c\mid x)=\frac{P(c)P(x\mid c)}{P(x)}=\frac{P(c)}{P(x)}\prod_{i=1}^dP(x_i\mid c) P(c∣x)=P(x)P(c)P(x∣c)=P(x)P(c)i=1∏dP(xi∣c)
- P ( c ) P(c) P(c):类先验概率,表达了各类样本所占比例,根据大数定律,可通过频率估计概率
- P ( x ∣ c ) P(x\mid c) P(x∣c):样本 x x x相对于类别 c c c的条件概率,根据假设,每个属性独立对结果影响
- P ( x ) P(x) P(x):归一化证据因子,与类别标记无关
朴素贝叶斯的判定准则为:
h n b ( x ) = arg max c ∈ C P ( c ) ∏ i = 1 d P ( x i ∣ c ) h_{nb}(x)=\arg \max_{c\in C}P(c)\prod_{i=1}^dP(x_i\mid c) hnb(x)=arg