1.定义:
选择排序:一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。
2.main
2.1 算法步骤
- 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
- 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
- 重复第二步,直到所有元素均排序完毕。
2.2 动图解析
2.3 力扣做题分析
/**
* @param {number[]} nums
* @return {void} Do not return anything, modify nums in-place instead.
*/
var sortColors = function(nums) {
let n = nums.length
for(let i = 0;i<n;i++){
let min = i
for(let j = i;j< n;j++){
if(nums[min]>nums[j]) min = j
}
let tmp = nums[i]
nums[i] = nums[min]
nums[min] = tmp
}
};
var SelectSort = function(nums) {
let n = nums.length
for(let i = 0;i<n;i++){
let min = i
for(let j = i;j< n;j++){
if(nums[min]>nums[j]) min = j
}
let tmp = nums[i]
nums[i] = nums[min]
nums[min] = tmp
}
};
var canMakeArithmeticProgression = function(arr) {
SelectSort(arr)
let d = arr[1] - arr[0]
for(let i =0;i<arr.length - 1;i++){
if(arr[i+1] - arr[i] !== d) return false
}
return true
};
var SelectSort = function(nums) {
let n = nums.length
for(let i = 0;i<n;i++){
let min = i
for(let j = i;j< n;j++){
if(nums[min]>nums[j]) min = j
}
let tmp = nums[i]
nums[i] = nums[min]
nums[min] = tmp
}
};
var findMedianSortedArrays = function(nums1, nums2) {
let nums = [...nums1, ...nums2]
SelectSort(nums)
const n = nums.length
if (n % 2 === 0) return (nums[n/2 - 1] + nums[n/2]) / 2
else return nums[Math.floor(n/2)]
};
var SelectSort = function(nums) {
let n = nums.length
for(let i = 0;i<n;i++){
let min = i
for(let j = i;j< n;j++){
if(nums[min]>nums[j]) min = j
}
let tmp = nums[i]
nums[i] = nums[min]
nums[min] = tmp
}
};
var dominantIndex = function(nums) {
let onums = [...nums]
SelectSort(nums)
let n = nums.length
let max = nums[n - 1]
let flag = 0
for(let i=0;i<n - 1;i++){
if(max < nums[i]*2) flag = -1
}
return flag ? flag : onums.indexOf(max)
};
3.总结
选择排序是一种简单直观的排序算法。它通过重复从未排序的部分中选择最小的元素,并将其放到已经排序的部分的末尾,直到所有元素都排序完成。
选择排序的时间复杂度为O(n^2),并且其稳定性较低,即相同元素的相对位置可能被打乱。由于其简单易懂的特点,选择排序通常用于小规模数据的排序任务,或作为其他排序算法的子过程。
总之,选择排序虽然不是最快的排序算法,但它易于理解和实现,在某些情况下仍然是一种比较合适的排序方法。当处理小规模数据时,选择排序可以在空间复杂度上有优势,因为它只需要一个额外的交换空间。