【算法训练】 --- 选择排序

文章介绍了选择排序的基本原理,包括算法步骤、动图解析以及在LeetCode解题中的应用实例,如颜色分类、等差数列判断、寻找中位数和找至少是其他数字两倍的最大数问题。选择排序虽然时间复杂度为O(n²),但在小规模数据排序和空间效率上具有一定优势。
摘要由CSDN通过智能技术生成

1.定义:

选择排序:一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。

2.main

2.1 算法步骤

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。

2.2 动图解析

在这里插入图片描述

2.3 力扣做题分析

力扣-颜色分类
在这里插入图片描述

/**
 * @param {number[]} nums
 * @return {void} Do not return anything, modify nums in-place instead.
 */
var sortColors = function(nums) {
    let n = nums.length
    for(let i = 0;i<n;i++){
        let min = i
        for(let j = i;j< n;j++){
            if(nums[min]>nums[j]) min = j
        }
        let tmp = nums[i]
        nums[i] = nums[min]
        nums[min] = tmp
    }
};

力扣-判断能否形成等差数列
在这里插入图片描述

 var SelectSort = function(nums) {
    let n = nums.length
    for(let i = 0;i<n;i++){
        let min = i
        for(let j = i;j< n;j++){
            if(nums[min]>nums[j]) min = j
        }
        let tmp = nums[i]
        nums[i] = nums[min]
        nums[min] = tmp
    }
};

var canMakeArithmeticProgression = function(arr) {
    SelectSort(arr)
    let d = arr[1] - arr[0]
    for(let i =0;i<arr.length - 1;i++){
        if(arr[i+1] - arr[i] !== d) return false
    }
    return true
};

力扣-寻找序列的中位数
在这里插入图片描述

var SelectSort = function(nums) {
    let n = nums.length
    for(let i = 0;i<n;i++){
        let min = i
        for(let j = i;j< n;j++){
            if(nums[min]>nums[j]) min = j
        }
        let tmp = nums[i]
        nums[i] = nums[min]
        nums[min] = tmp
    }
};

var findMedianSortedArrays = function(nums1, nums2) {
   let nums = [...nums1, ...nums2]
   SelectSort(nums)
   const n = nums.length
   if (n % 2 === 0) return (nums[n/2 - 1] + nums[n/2]) / 2
   else return nums[Math.floor(n/2)]
};

力扣- 至少是其他数字两倍的最大数
在这里插入图片描述

var SelectSort = function(nums) {
    let n = nums.length
    for(let i = 0;i<n;i++){
        let min = i
        for(let j = i;j< n;j++){
            if(nums[min]>nums[j]) min = j
        }
        let tmp = nums[i]
        nums[i] = nums[min]
        nums[min] = tmp
    }
};

var dominantIndex = function(nums) {
    let onums = [...nums]
    SelectSort(nums)
    let n = nums.length
    let max = nums[n - 1]
    let flag = 0
    for(let i=0;i<n - 1;i++){
        if(max < nums[i]*2) flag = -1
    }
    return flag ? flag : onums.indexOf(max)
};

3.总结

选择排序是一种简单直观的排序算法。它通过重复从未排序的部分中选择最小的元素,并将其放到已经排序的部分的末尾,直到所有元素都排序完成。

选择排序的时间复杂度为O(n^2),并且其稳定性较低,即相同元素的相对位置可能被打乱。由于其简单易懂的特点,选择排序通常用于小规模数据的排序任务,或作为其他排序算法的子过程。

总之,选择排序虽然不是最快的排序算法,但它易于理解和实现,在某些情况下仍然是一种比较合适的排序方法。当处理小规模数据时,选择排序可以在空间复杂度上有优势,因为它只需要一个额外的交换空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

橘子☆心酸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值