Positive-definite matrix(正定矩阵)

正定矩阵定义

In linear algebra, a symmetric(对称) n × n real matrix M is said to be positive definite if zTMz is positive, for any non-zero column vector z of n real numbers; where zdenotes the transpose of z.

More generally, an n × n complex matrix M is said to be positive definite if z*Mz is real and positive for all non-zero complex vectors z; where z* denotes the conjugate transpose of z. This property implies that M is an Hermitian matrix(埃尔米特矩阵,共轭转置仍是自己).

The negative definitepositive semi-definite, and negative semi-definite matrices are defined in the same way, except that the formula zTMz or z*Mz is required to be always negative, non-negative, and non-positive, respectively.

特征及性质

Let M be an n × n Hermitian matrix. The following properties are equivalent to M being positive definite:

  1. All its eigenvalues are positive.
  2. 正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0.
  3. It has a unique Cholesky decomposition. The matrix M is positive definite if and only if there exists an unique lower triangular matrix L, with real and strictly positive diagonal elements, such that M = LL*. This factorization is called the Cholesky decomposition of M.
  4. The general purely quadratic real function f(z)on n real variables z1, ..., zn can always be written as zTMz where z is the column vector with those variables, and M is a symmetric real matrix. Therefore,the matrix being positive definite means that f has a unique minimum (zero) when z is zero, and is strictly positive for any other z。
  5. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。
    判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。
    判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值