In linear algebra, a symmetric(对称) n × n real matrix M is said to be positive definite if zTMz is positive, for any non-zero column vector z of n real numbers; where zT denotes the transpose of z.
More generally, an n × n complex matrix M is said to be positive definite if z*Mz is real and positive for all non-zero complex vectors z; where z* denotes the conjugate transpose of z. This property implies that M is an Hermitian matrix(埃尔米特矩阵,共轭转置仍是自己).
The negative definite, positive semi-definite, and negative semi-definite matrices are defined in the same way, except that the formula zTMz or z*Mz is required to be always negative, non-negative, and non-positive, respectively.
特征及性质
Let M be an n × n Hermitian matrix. The following properties are equivalent to M being positive definite:
- All its eigenvalues are positive.
- 正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0.
- It has a unique Cholesky decomposition. The matrix M is positive definite if and only if there exists an unique lower triangular matrix L, with real and strictly positive diagonal elements, such that M = LL*. This factorization is called the Cholesky decomposition of M.
- The general purely quadratic real function f(z)on n real variables z1, ..., zn can always be written as zTMz where z is the column vector with those variables, and M is a symmetric real matrix. Therefore,the matrix being positive definite means that f has a unique minimum (zero) when z is zero, and is strictly positive for any other z。
-
判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。