高等数学笔记(上上)

函数与极限

基本初等函数

  • 幂函数: f ( x ) = x μ ( μ ∈ R 是常数 ) f(x)=x^{\mu}(\mu \in R是常数) f(x)=xμ(μR是常数)
  • 指数函数: f ( x ) = a x ( a > 0 且 a ≠ 1 ) f(x)=a^x(a>0且a\ne 1) f(x)=ax(a>0a=1)
  • 对数函数: f ( x ) = log ⁡ a x ( a > 0 且 a ≠ 1 ) f(x)=\log_ax(a>0且a\ne 1) f(x)=logax(a>0a=1)
  • 三角函数: 如 f ( x ) = sin ⁡ x , f ( x ) = cos ⁡ x , f ( x ) = tan ⁡ x 如f(x)=\sin x, f(x)=\cos x, f(x)=\tan x f(x)=sinx,f(x)=cosx,f(x)=tanx
  • 反三角函数: 如 f ( x ) = arcsin ⁡ x 如f(x)=\arcsin x f(x)=arcsinx
    由常数和基本初等函数经过有限次的四则运和有限次的复合算得到的函数成为初等函数。
    结合欧拉公式,其实上面的函数也没那么"基本",指数函数和三角函数是可以相互转化的: sin ⁡ x = e i x − e − i x 2 i \sin x=\frac{e^{ix}-e^{-ix}}{2i} sinx=2ieixeix

双曲函数

这个和高等数学其实没啥关系,但是这东西有点意思,就在这里放一下。

  • sh ⁡ x = sinh ⁡ x = e x − e − x 2 \sh x=\sinh x=\frac{e^x-e^{-x}}{2} shx=sinhx=2exex
  • ch ⁡ x = cosh ⁡ x = e x + e − x 2 \ch x=\cosh x=\frac{e^x+e^{-x}}{2} chx=coshx=2ex+ex
    在这里插入图片描述
    cosh ⁡ x \cosh x coshx是悬链线函数,即两端固定的一条(粗细与质量分布)均匀、柔软(不能伸长)的链条,在重力的作用下所具有的曲线形状。
    三角函数(圆函数)性质: cos ⁡ 2 x + sin ⁡ 2 x = 1 \cos^2 x+\sin^2x=1 cos2x+sin2x=1
    双曲函数性质: ch ⁡ 2 x − sh ⁡ 2 x = 1 \ch^2x-\sh^2x=1 ch2xsh2x=1
    这个可能也是他们名字的由来,三角函数涨的像圆的方程,双曲函数长得像双曲线的方程。
    圆函数在实数域是周期函数,但是双曲函数不是。然而 sh ⁡ x = − i sin ⁡ i x \sh x = -i\sin ix shx=isinix,从这个角度看, sh ⁡ x \sh x shx在复数域也是周期函数。
    { e i x = cos ⁡ x + i sin ⁡ x (欧拉公式,证明可以通过泰勒展开来看) e − i x = cos ⁡ x − i sin ⁡ x    ⟹    { sin ⁡ x = e i x − e − i x 2 i sin ⁡ i x = e − x − e x 2 i    ⟹    sh ⁡ x = − i sin ⁡ i x \begin{aligned} &\begin{cases} e^{ix}=\cos x+i\sin x(欧拉公式,证明可以通过泰勒展开来看)\\ e^{-ix}=\cos x-i\sin x \end{cases}\\ \implies &\begin{cases} \sin x=\frac{e^{ix}-e^{-ix}}{2i}\\ \sin ix=\frac{e^{-x}-e^{x}}{2i} \end{cases}\\ \implies &\sh x=-i\sin ix \end{aligned} {eix=cosx+isinx(欧拉公式,证明可以通过泰勒展开来看)eix=cosxisinx{sinx=2ieixeixsinix=2iexexshx=isinix
    双曲函数的加减法也有类似于三角函数的形式,举个例子
    sh ⁡ ( x + y ) = sh ⁡ x ch ⁡ y + ch ⁡ x sh ⁡ y \sh(x+y)=\sh x\ch y+\ch x\sh y sh(x+y)=shxchy+chxshy

Q: e = 2.718281828459 , π = 3.1415926 e=2.718281828459, \pi=3.1415926 e=2.718281828459,π=3.1415926是自然界最重要的两个无理数,是自然界或者数学上的什么假设使得他们是这个取值?是否存在一个世界, e , π e,\pi e,π取其他值,这样的世界中的什么公理和我们的世界是不同的?

函数的极限

定义1: 自变量趋于 x 0 x_0 x0时的极限
设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一去心邻域内有定义.如果存在常数 A A A,对于任意给定的正数 ε \varepsilon ε(无论它多么小),总存在正数 δ \delta δ,使得当 x x x满足不等式 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,对应的函数值 f ( x ) f(x) f(x)都满足不等式
∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε,
那么常数 A A A就叫做函数 f ( x ) f(x) f(x) x → x 0 x\to x_0 xx0时的极限,记作
lim ⁡ x → x 0 f ( x ) = A 或 f ( x ) → A ( 当 x → x 0 ) \lim_{x\to x_0}f(x)=A或f(x)\to A(当x\to x_0) xx0limf(x)=Af(x)A(xx0)
这里需要注意的是,定义中 0 < ∣ x − x 0 ∣ 0<|x-x_0| 0<xx0表示 x ≠ x 0 x\ne x_0 x=x0,所以 x → x 0 x\to x_0 xx0时, f ( x ) f(x) f(x)有没有极限,与 f ( x ) f(x) f(x)在点 x 0 x_0 x0是否有定义没有关系。例如 f ( x ) = x 2 − 1 x − 1 f(x)=\frac{x^2-1}{x-1} f(x)=x1x21 x = 1 x=1 x=1处无定义,但是有极限为2.
函数的单侧极限:如果考虑 x x x仅从 x 0 x_0 x0的左侧趋于 x 0 x_0 x0,记作 x → x 0 − x\to x_0^- xx0的情形,如果对于任意小的 ε \varepsilon ε,都存在正数 δ \delta δ,使得 x 0 − δ < x < x 0 x_0-\delta<x<x_0 x0δ<x<x0,都满足 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε,那么 A A A就叫做函数 f ( x ) f(x) f(x) x → x 0 x\to x_0 xx0时的左极限,记作
lim ⁡ x → x 0 − = A 或 f ( x 0 − ) = A \lim_{x\to x_0^-}=A或f(x_0^-)=A xx0lim=Af(x0)=A
右极限定义类似。
函数 f ( x ) f(x) f(x) x 0 x_0 x0处有极限的充要条件是左极限和右极限都存在且相等,即 f ( x 0 − ) = f ( x 0 + ) f(x_0^-)=f(x_0^+) f(x0)=f(x0+)
定义2 :自变量趋于 ∞ \infin 时的极限
设函数 f ( x ) f(x) f(x)在点 ∣ x ∣ |x| x的大于某一正数时有定义.如果存在常数 A A A,对于任意给定的正数 ε \varepsilon ε(无论它多么小),总存在正数 X X X,使得当 x x x满足不等式 ∣ x ∣ > X |x|>X x>X时,对应的函数值 f ( x ) f(x) f(x)都满足不等式
∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε,
那么常数 A A A就叫做函数 f ( x ) f(x) f(x) x → ∞ x\to \infin x时的基线,记作
lim ⁡ x → ∞ f ( x ) = A 或 f ( x ) → A ( 当 x → ∞ ) \lim_{x\to \infin}f(x)=A或f(x)\to A(当x\to \infin) xlimf(x)=Af(x)A(x)
定义:无穷小
如果函数 f ( x ) f(x) f(x) x → x 0 ( 或 x → ∞ ) x\to x_0(或x\to \infin) xx0(x)时的极限为0,那么称函数 f ( x ) f(x) f(x)为当 x → x 0 ( 或 x → ∞ ) x\to x_0(或x\to \infin) xx0(x)时的无穷小。
定理
在自变量的同一变化过程 x → x 0 ( 或 x → ∞ ) x\to x_0(或x\to \infin) xx0(x)中,函数 f ( x ) f(x) f(x)具有极限 A A A的充要条件是 f ( x ) = A + α f(x)=A+\alpha f(x)=A+α,其中 α \alpha α是无穷小。
定理
函数有限次四则运算和复合运算的极限是极限的相应的四则运算和符合运算。
lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B ,则 lim ⁡ [ f ( x ) ± g ( x ) ] = A ± B , lim ⁡ [ f ( x ) g ( x ) ] = A B , lim ⁡ [ f ( x ) / g ( x ) ] = A / B ( B ≠ 0 ) \lim f(x)=A, \lim g(x)=B,则\lim[f(x)\pm g(x)]=A\pm B, \lim[f(x) g(x)]=AB,\lim[f(x)/g(x)]=A/B(B\ne 0) limf(x)=A,limg(x)=B,则lim[f(x)±g(x)]=A±B,lim[f(x)g(x)]=AB,lim[f(x)/g(x)]=A/B(B=0)
无穷小的四则运算
α , β 是无穷小, c 是常数 \alpha, \beta是无穷小,c是常数 α,β是无穷小,c是常数,则 α + β , α − β , α ∗ β , c α , α / c \alpha+\beta,\alpha-\beta,\alpha *\beta, c\alpha, \alpha/c α+β,αβ,αβ,cα,α/c仍旧是无穷小。
夹逼定理
如果当 x ∈ U ˚ ( x 0 , r ) 或 ∣ x ∣ > M x\in\mathring U(x_0,r)或|x|>M xU˚(x0,r)x>M时, g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\le f(x)\le h(x) g(x)f(x)h(x),且 lim ⁡ x → x 0 ( x → ∞ ) g ( x ) = A , lim ⁡ x → x 0 ( x → ∞ ) h ( x ) = A \lim\limits_{\begin{matrix}x\to x_0\\ (x\to \infin)\end{matrix}}g(x)=A,\lim\limits_{\begin{matrix}x\to x_0\\ (x\to \infin)\end{matrix}}h(x)=A xx0(x)limg(x)=A,xx0(x)limh(x)=A,那么 lim ⁡ x → x 0 ( x → ∞ ) g ( x ) = A \lim\limits_{\begin{matrix}x\to x_0\\ (x\to \infin)\end{matrix}}g(x)=A xx0(x)limg(x)=A
定义函数连续
设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某一邻域内有定义,如果
lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim_{\Delta x\to 0}\Delta y=\lim_{\Delta x\to 0}[f(x_0+\Delta x)-f(x_0)]=0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0,那么就称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处连续.
对应的含义是如果当 Δ x \Delta x Δx趋于0时,函数的对应增量 Δ y \Delta y Δy也趋于0,则称函数在 x 0 x_0 x0处连续。若 f ( x 0 − ) = f ( x 0 ) f(x_0^-)=f(x_0) f(x0)=f(x0),则称函数 f ( x ) 在 x 0 f(x)在x_0 f(x)x0处左连续;若 f ( x 0 + ) = f ( x 0 ) f(x_0^+)=f(x_0) f(x0+)=f(x0),则称函数 f ( x ) 在 x 0 f(x)在x_0 f(x)x0处右连续。如果函数 f ( x ) f(x) f(x)在一个区间上每个点都连续,则称函数 f ( x ) f(x) f(x)在此区间上连续。
重要极限和推导
别慌:后面学了泰勒公式,直接使用泰勒展开,通用且容易多了。这里仅作为一个方法记录在此。
lim ⁡ x → 0 f ( x ) x = lim ⁡ x → 0 log ⁡ a ( 1 + x ) x = lim ⁡ x → 0 log ⁡ a ( 1 + x ) 1 x = log ⁡ a e = 1 ln ⁡ a log ⁡ a ( 1 + x ) ∽ 1 ln ⁡ a x \begin{aligned} \lim_{x\to 0}\frac{f(x)}{x} &=\lim_{x\to 0}\frac{\log_a(1+x)}{x}\\ &=\lim_{x\to 0}\log_a(1+x)^{\frac{1}{x}}=\log_ae=\frac{1}{\ln a} \end{aligned}\\ \bold{\log_a(1+x)\backsim \frac 1{\ln a}x} x0limxf(x)=x0limxloga(1+x)=x0limloga(1+x)x1=logae=lna1loga(1+x)lna1x

lim ⁡ x → 0 f ( x ) x = lim ⁡ x → 0 a x − 1 x = lim ⁡ t → 0 t ln ⁡ a ln ⁡ ( 1 + t ) ( 变量替换 t = a x − 1 ) = ln ⁡ a a x − 1 ∽ ln ⁡ a ⋅ x \begin{aligned} \lim_{x\to 0}\frac{f(x)}{x} &=\lim_{x\to 0}\frac{a^x-1}{x}\\ &=\lim_{t\to 0}\frac{t\ln a}{\ln(1+t)}(变量替换t=a^x-1)\\ &=\ln a \end{aligned}\\ \bold{a^x-1\backsim \ln a\cdot x} x0limxf(x)=x0limxax1=t0limln(1+t)tlna(变量替换t=ax1)=lnaax1lnax

lim ⁡ x → 0 f ( x ) x = lim ⁡ x → 0 ( 1 + x ) μ − 1 x = lim ⁡ x → 0 ( 1 + x ) μ − 1 ln ⁡ ( 1 + x ) μ ⋅ μ ln ⁡ ( 1 + x ) x = μ ( 1 + x ) μ − 1 ∽ μ ⋅ x \begin{aligned} \lim_{x\to 0}\frac{f(x)}{x} &=\lim_{x\to 0}\frac{(1+x)^\mu-1}{x}\\ &=\lim_{x\to 0}\frac{(1+x)^\mu-1}{\ln(1+x)^\mu}\cdot\frac{\mu\ln(1+x)}{x}=\mu\\ \end{aligned}\\ \bold{(1+x)^\mu-1\backsim \mu\cdot x} x0limxf(x)=x0limx(1+x)μ1=x0limln(1+x)μ(1+x)μ1xμln(1+x)=μ(1+x)μ1μx

微分中值定理与导数的应用

费马引理

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域 U ( x 0 ) U(x_0) U(x0)内有定义,并且在 x 0 x_0 x0处可导,如果对任意 x ∈ U ( x 0 ) x\in U(x_0) xU(x0),有 f ( x ) ≤ f ( x 0 ) f(x)\le f(x_0) f(x)f(x0)\ (或 f ( x ) ≥ f ( x 0 ) f(x)\ge f(x_0) f(x)f(x0)),那么 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0.
证明:不妨设 x ∈ U ( x 0 ) x\in U(x_0) xU(x0)时,都有 f ( x ) ≤ f ( x 0 ) f(x)\le f(x_0) f(x)f(x0)(对于 f ( x ) ≤ f ( x 0 ) f(x)\le f(x_0) f(x)f(x0),可以有类似推导).于是对于 f ( x + Δ x ) ≤ f ( x 0 ) f(x+\Delta x)\le f(x_0) f(x+Δx)f(x0)
Δ x > 0 时 \Delta x> 0时 Δx>0,
f ( x + Δ x ) − f ( x ) Δ x ≤ 0 \frac{f(x+\Delta x)-f(x)}{\Delta x}\le 0 Δxf(x+Δx)f(x)0
Δ x < 0 时 \Delta x< 0时 Δx<0,
f ( x + Δ x ) − f ( x ) Δ x ≥ 0 \frac{f(x+\Delta x)-f(x)}{\Delta x}\ge 0 Δxf(x+Δx)f(x)0
根据函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导的条件和极限的保号性,便得到:
f ′ ( x ) = f + ′ x 0 = lim ⁡ Δ x → 0 + f ( x + Δ x ) − f ( x ) Δ x ≤ 0 f ′ ( x ) = f − ′ x 0 = lim ⁡ Δ x → 0 − f ( x + Δ x ) − f ( x ) Δ x ≥ 0 f^{'}(x)=f^{'}_+{x_0}=\lim_{\Delta x\to 0^+}\frac{f(x+\Delta x)-f(x)}{\Delta x}\le 0\\ f^{'}(x)=f^{'}_-{x_0}=\lim_{\Delta x\to 0^-}\frac{f(x+\Delta x)-f(x)}{\Delta x}\ge 0 f(x)=f+x0=Δx0+limΔxf(x+Δx)f(x)0f(x)=fx0=Δx0limΔxf(x+Δx)f(x)0
所以 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0
通常称导数为0的点为驻点(或稳定点,临界点)

罗尔定理

如果函数 f ( x ) f(x) f(x)满足:

  • (1)在 [ a , b ] [a,b] [a,b]连续;
  • (2)在 ( a , b ) (a,b) (a,b)可导;
  • (3)在端点处的函数值相等,即 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)
    那么在 ( a , b ) (a,b) (a,b)上至少有一点 ξ \xi ξ,使得 f ′ ( ξ ) = 0 f^{'}(\xi)=0 f(ξ)=0

证明:
因为 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),假设在 [ a , b ] [a,b] [a,b]上, f ( x ) f(x) f(x)为常数,则 f ( x ) = C , f ′ ( x ) = 0 f(x)=C, f'(x)=0 f(x)=C,f(x)=0,得证;
否则, f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上必然有最大值 M M M,且 f ( a ) = f ( b ) ≠ M f(a)=f(b)\ne M f(a)=f(b)=M(否则考虑其最小值m),不妨设 f ( ξ ) = M , ( a < ξ < b ) f(\xi)=M,(a<\xi<b) f(ξ)=M,(a<ξ<b),根据费马引理, f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0.

拉格朗日中值定理

罗尔定理中 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)这个条件相当特殊,使罗尔定理的使用收到限制,如果去掉 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)这个条件,就得到拉格朗日中值定理:
如果函数 f ( x ) f(x) f(x)满足:

  • (1)在 [ a , b ] [a,b] [a,b]连续;
  • (2)在 ( a , b ) (a,b) (a,b)可导;
    那么在 ( a , b ) (a,b) (a,b)上至少有一点 ξ ( a < ξ < b ) \xi(a<\xi<b) ξ(a<ξ<b),使得 f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{'}(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)
    构造一个函数使得 g ( a ) = g ( b ) g(a)=g(b) g(a)=g(b),可以取 g ( a ) = g ( b ) = f ( a ) g(a)=g(b)=f(a) g(a)=g(b)=f(a),所要做的事情,就是保持 x → [ a , b ] x\rightarrow[a,b] x[a,b]时, g ( x ) g(x) g(x)去掉 f ( x ) f(x) f(x)的增量。于是可以有
    g ( x ) = f ( x ) − f ( b ) − f ( a ) b − a ( x − a ) g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a) g(x)=f(x)baf(b)f(a)(xa)
    容易验证 g ( a ) = g ( b ) = f ( a ) g(a)=g(b)=f(a) g(a)=g(b)=f(a)
    根据罗尔定理,存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)
    g ′ ( ξ ) = f ′ ( ξ ) − f ( b ) − f ( a ) b − a = 0 g'(\xi)=f'(\xi)-\frac{f(b)-f(a)}{b-a}=0 g(ξ)=f(ξ)baf(b)f(a)=0
    f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

在这里插入图片描述
几何意义,中间至少存在一点使得斜率为AB两点连线斜率。
同济版高等数学给出了一个基于罗尔定理的证明。实际上是不是也可以这样证明(但是所有参考资料都没这么证明的,可能有问题?这个证明的问题在于使用了积分,这里还没有引入积分概念呢。)
证明:
因为 f ( x ) 在 ( a , b ) f(x)在(a,b) f(x)(a,b)上处处可导,对于 ( a , b ) (a,b) (a,b)上任意一点 ρ \rho ρ f ′ ( ρ − ) = f ′ ( ρ + ) f^{'}(\rho_-)=f^{'}(\rho_+) f(ρ)=f(ρ+),所以实际上 f ′ ( x ) 在 ( a , b ) f^{'}(x)在(a,b) f(x)(a,b)上也是连续的。假设 f ′ ( x ) 在 ( a , b ) f^{'}(x)在(a,b) f(x)(a,b)上有最小值和最大值 α , β \alpha,\beta α,β,假设 f ( b ) − f ( a ) b − a ( A B 连线的斜率 ) = γ \frac{f(b)-f(a)}{b-a}(AB连线的斜率)=\gamma baf(b)f(a)(AB连线的斜率)=γ,有三种情况:

  • γ < α < β \gamma<\alpha<\beta γ<α<β. f ( b ) = f ( a ) + ∫ a b f ′ ( x ) d x > f ( a ) + γ ( b − a ) = f ( b ) f(b)=f(a)+\int_a^bf^{'}(x)dx>f(a)+\gamma(b-a)=f(b) f(b)=f(a)+abf(x)dx>f(a)+γ(ba)=f(b),矛盾;
  • α < β < γ \alpha<\beta<\gamma α<β<γ.同上可证,也矛盾;
  • α < γ < β \alpha<\gamma<\beta α<γ<β,只能是这种情况。因为 f ′ ( b ) f^{'}(b) f(b)连续,所以 ( a , b ) (a,b) (a,b)上至少存在一个点 ξ \xi ξ,使得 f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{'}(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)
    有限增量定理(微分中值定理)
    x x x为区间 [ a , b ] [a,b] [a,b]内一点, x + Δ x x+\Delta x x+Δx为这区间内的另一点( Δ x > 0 或 Δ x < 0 \Delta x>0或\Delta x <0 Δx>0Δx<0),则拉格朗日中值定理在区间 [ x , x + Δ x ] ( 当 Δ x > 0 时 ) [x, x+\Delta x](当\Delta x>0时) [x,x+Δx](Δx>0)或在区间 [ x + Δ x , x ] ( 当 Δ x < 0 时 ) [x+\Delta x,x](当\Delta x<0时) [x+Δx,x](Δx<0)上就成为 f ( x + Δ x ) − f ( x ) = f ′ ( x + θ Δ x ) Δ x ( 0 < θ < 1 ) f(x+\Delta x)-f(x)=f'(x+\theta\Delta x)\Delta x(0<\theta<1) f(x+Δx)f(x)=f(x+θΔx)Δx(0<θ<1)。函数的微分 d y = f ′ ( x ) ⋅ Δ x dy=f'(x)\cdot\Delta x dy=f(x)Δx是函数的增量 Δ y \Delta y Δy的近似表达式,一般说来以 d y dy dy近似代替 Δ y \Delta y Δy是产生的误差只有当 Δ x → 0 \Delta x\to 0 Δx0时才趋于0;但是这个定理给出了自变量取得有限增量 Δ x ( ∣ Δ x ∣ \Delta x(|\Delta x| Δx(∣Δx不一定很小时),函数增量 Δ y \Delta y Δy的准确表达式。这个就可以用来推导泰勒中值定理,也是泰勒公式能用于近似计算的关键(泰勒展开在不一定在很小范围内也能成立)。
    柯西中值定理

如果函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x)满足
(1)在闭区间 [ a , b ] [a,b] [a,b]上连续;
(2)在开区间 ( a , b ) (a,b) (a,b)上可导;
(3)对任意 x ∈ ( a , b ) x\in(a,b) x(a,b), F ′ ( x ) ≠ 0 F'(x)\ne 0 F(x)=0
那么在 ( a , b ) (a,b) (a,b)内至少存在一点 ξ \xi ξ,使等式
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)} F(b)F(a)f(b)f(a)=F(ξ)f(ξ)成立.

证明:先对结论做些分析,基本思路还是转换成罗尔定理或者拉格朗日定理。以上等式右边是两个导数的比值,不好处理,可以做个移项。
f ( b ) − f ( a ) F ( b ) − F ( a ) F ′ ( ξ ) − f ′ ( ξ ) = 0 \frac{f(b)-f(a)}{F(b)-F(a)}F'(\xi)-f'(\xi)=0 F(b)F(a)f(b)f(a)F(ξ)f(ξ)=0
φ ( x ) = f ( b ) − f ( a ) F ( b ) − F ( a ) F ( ξ ) − f ( ξ ) \varphi(x)=\frac{f(b)-f(a)}{F(b)-F(a)}F(\xi)-f(\xi) φ(x)=F(b)F(a)f(b)f(a)F(ξ)f(ξ)
φ ′ ( x ) = f ( b ) − f ( a ) F ( b ) − F ( a ) F ′ ( ξ ) − f ′ ( ξ ) \varphi'(x)=\frac{f(b)-f(a)}{F(b)-F(a)}F'(\xi)-f'(\xi) φ(x)=F(b)F(a)f(b)f(a)F(ξ)f(ξ)
可以证明 φ ( a ) = φ ( b ) \varphi(a)=\varphi(b) φ(a)=φ(b),应用罗尔定理,可以得到证明。
拉格朗日中值定理的重要作用之一就是证明洛必达法则。
问题:能不能通过分子分母都除以 b − a b-a ba的方式来证明?因为 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) , F ( b ) − F ( a ) = F ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a),F(b)-F(a)=F'(\xi)(b-a) f(b)f(a)=f(ξ)(ba),F(b)F(a)=F(ξ)(ba),分子分母相除,即可得证?不行。因为这种情况下两个 ξ \xi ξ不见得取得同一个值。

洛必达法则(L’Hospital Principle)
1)当 x → a x\to a xa时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x)都趋于0;
2)在点a的某去心邻域内 f ′ ( x ) f'(x) f(x) F ′ ( x ) F'(x) F(x)都存在且 F ′ ( x ) ≠ 0 F'(x)\ne 0 F(x)=0;
3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x\to a}\frac{f'(x)}{F'(x)} xalimF(x)f(x)存在或者为无穷大,则
lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim_{x\to a}\frac{f(x)}{F(x)}=\lim_{x\to a}\frac{f'(x)}{F'(x)} xalimF(x)f(x)=xalimF(x)f(x)

证明:由条件1,不妨设 f ( a ) = F ( a ) = 0 f(a)=F(a)=0 f(a)=F(a)=0(这样并不影响函数的连续性、和 x → a x\to a xa时的极限,并且这个也是为甚么洛必达法则只能用在分子分母都趋于0的场景)
f ( x ) F ( x ) = f ( x ) − f ( a ) F ( x ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) ( 其中 ξ 在 x , a 之间 ) lim ⁡ x → a f ′ ( ξ ) F ′ ( ξ ) = f ′ ( a ) F ′ ( a ) \begin{aligned} \frac{f(x)}{F(x)}&=\frac{f(x)-f(a)}{F(x)-F(a)}=\frac{f'(\xi)}{F'(\xi)}(其中\xi 在x, a之间)\\ \lim_{x\to a}\frac{f'(\xi)}{F'(\xi)}&=\frac{f'(a)}{F'(a)} \end{aligned} F(x)f(x)xalimF(ξ)f(ξ)=F(x)F(a)f(x)f(a)=F(ξ)f(ξ)(其中ξx,a之间)=F(a)f(a)

洛必达法则推论
1)当 x → a x\to a xa时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x)都趋于0;
2)在点a的某去心邻域内 f ′ ( x ) f'(x) f(x) F ′ ( x ) F'(x) F(x)都存在且 F ′ ( x ) ≠ 0 F'(x)\ne 0 F(x)=0;
3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x\to a}\frac{f'(x)}{F'(x)} xalimF(x)f(x)存在(不包含无穷大);
若另有 h ( x ) h(x) h(x) x = a x=a x=a存在极限,则
lim ⁡ x → a h ( x ) f ( x ) F ( x ) = lim ⁡ x → a h ( x ) f ′ ( x ) F ′ ( x ) = [ h ( x ) f ( x ) ] ′ F ′ ( x ) \lim_{x\to a}h(x)\frac{f(x)}{F(x)}=\lim_{x\to a}h(x)\frac{f'(x)}{F'(x)}=\frac{[h(x)f(x)]'}{F'(x)} xalimh(x)F(x)f(x)=xalimh(x)F(x)f(x)=F(x)[h(x)f(x)]
即,如果 h ( x ) h(x) h(x) a a a处存在极限,此时,分子对 h ( x ) f ( x ) h(x)f(x) h(x)f(x)求导还是对 f ( x ) f(x) f(x)求导对结果没有影响。

证明1: 根据极限的运算(若两个极限存在,则乘积的极限等于极限的乘积);
证明2:
h ( x ) f ( x ) F ( x ) = h ( x ) [ f ( x ) − f ( a ) ] F ( x ) − F ( a ) = h ( x ) f ′ ( ξ ) F ′ ( ξ ) ( 其中 ξ 在 x , a 之间 ) lim ⁡ x → a h ( x ) f ′ ( ξ ) F ′ ( ξ ) = h ( a ) f ′ ( a ) F ′ ( a ) (乘积的极限等于极限的乘积 ) \begin{aligned} h(x)\frac{f(x)}{F(x)}&=\frac{h(x)[f(x)-f(a)]}{F(x)-F(a)}=h(x)\frac{f'(\xi)}{F'(\xi)}(其中\xi 在x, a之间)\\ \lim_{x\to a}h(x)\frac{f'(\xi)}{F'(\xi)}&=h(a)\frac{f'(a)}{F'(a)}\text (乘积的极限等于极限的乘积) \end{aligned} h(x)F(x)f(x)xalimh(x)F(ξ)f(ξ)=F(x)F(a)h(x)[f(x)f(a)]=h(x)F(ξ)f(ξ)(其中ξx,a之间)=h(a)F(a)f(a)(乘积的极限等于极限的乘积)
另一方面
h ( x ) f ( x ) F ( x ) = h ( x ) f ( x ) − h ( a ) f ( a ) F ( x ) − F ( a ) = [ h ( ξ ) f ( ξ ) ] ′ F ′ ( ξ ) ( 其中 ξ 在 x , a 之间 ) lim ⁡ x → a [ h ( ξ ) f ( ξ ) ] ′ F ′ ( ξ ) = [ h ( a ) f ( a ) ] ′ F ′ ( a ) \begin{aligned} \frac{h(x)f(x)}{F(x)}&=\frac{h(x)f(x)-h(a)f(a)}{F(x)-F(a)}=\frac{[h(\xi)f(\xi)]'}{F'(\xi)}(其中\xi 在x, a之间)\\ \lim_{x\to a}\frac{[h(\xi)f(\xi)]'}{F'(\xi)}&=\frac{[h(a)f(a)]'}{F'(a)} \end{aligned} F(x)h(x)f(x)xalimF(ξ)[h(ξ)f(ξ)]=F(x)F(a)h(x)f(x)h(a)f(a)=F(ξ)[h(ξ)f(ξ)](其中ξx,a之间)=F(a)[h(a)f(a)]

泰勒公式

f ( x ) f(x) f(x) x 0 x_0 x0处具有 n n n阶导数,试找出一个关于 x − x 0 x-x_0 xx0 n n n次多项式
p n ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + . . . + a n ( x − x 0 ) n p_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+...+a_n(x-x_0)^n pn(x)=a0+a1(xx0)+a2(xx0)2+...+an(xx0)n
来近似表达 f ( x ) f(x) f(x),要求使得 p n ( x ) p_n(x) pn(x) f ( x ) f(x) f(x)之差是当 x → x 0 x\to x_0 xx0时比 ( x − x 0 ) n (x-x_0)^n (xx0)n的高阶的无穷小.
假设 p n ( x ) p_n(x) pn(x) x 0 x_0 x0处的函数值即它的直到 n n n阶导数在 x 0 x_0 x0处的值依此与 f ( x 0 ) , f ′ ( x 0 ) , . . . f ( n ) ( x 0 ) f(x_0),f'(x_0),...f^{(n)}(x_0) f(x0),f(x0),...f(n)(x0)相等,即满足
{ p n ( x 0 ) = f ( x 0 ) ( 0 阶导数 ) p n ′ ( x 0 ) = f ′ ( x 0 ) ( 1 阶导数 ) p n ′ ′ ( x 0 ) = f ′ ′ ( x 0 ) ( 2 阶导数 ) . . . p n ( n ) ( x 0 ) = f ( n ) ( x 0 ) ( n 阶导数 ) \begin{cases} \begin{aligned} p_n(x_0)&=&f(x_0)&(0阶导数)\\ p_n'(x_0)&=&f'(x_0)&(1阶导数)\\ p_n''(x_0)&=&f''(x_0)&(2阶导数)\\ ...\\ p_n^{(n)}(x_0)&=&f^{(n)}(x_0)&(n阶导数)\\ \end{aligned} \end{cases} pn(x0)pn(x0)pn′′(x0)...pn(n)(x0)====f(x0)f(x0)f′′(x0)f(n)(x0)(0阶导数)(1阶导数)(2阶导数)(n阶导数)
可以求得
{ p n ( x 0 ) = a 0 = f ( x 0 ) ( 0 阶导数 ) p n ′ ( x 0 ) = 1 ! a 1 = f ′ ( x 0 ) ( 1 阶导数 ) p n ′ ′ ( x 0 ) = 2 ! a 2 = f ′ ′ ( x 0 ) ( 2 阶导数 ) . . . p n ( n ) ( x 0 ) = n ! a n = f ( n ) ( x 0 ) ( n 阶导数 ) \begin{cases} \begin{aligned} p_n(x_0)&=a_0&=&f(x_0)&(0阶导数)\\ p_n'(x_0)&=1!a_1&=&f'(x_0)&(1阶导数)\\ p_n''(x_0)&=2!a_2&=&f''(x_0)&(2阶导数)\\ ...\\ p_n^{(n)}(x_0)&=n!a_n&=&f^{(n)}(x_0)&(n阶导数)\\ \end{aligned} \end{cases} pn(x0)pn(x0)pn′′(x0)...pn(n)(x0)=a0=1!a1=2!a2=n!an====f(x0)f(x0)f′′(x0)f(n)(x0)(0阶导数)(1阶导数)(2阶导数)(n阶导数)
p n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n p_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n pn(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+...+n!f(n)(x0)(xx0)n
注意泰勒公式相等的意义:是 n n n阶导数都相等,不是严格要求值都相等。正如傅里叶级数相等的意义是能量相等,而不是值完全相等(Gibbs效应)

泰勒(Taylor)中值定理1: 如果函数 f ( x ) f(x) f(x) x 0 x_0 x0处具有 n n n阶导数,那么存在 x 0 x_0 x0的一个邻域,对于该邻域内的任一 x x x,有
f ( x ) = ∑ n = 0 N − 1 f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R N ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) \begin{aligned} f(x)&=\sum_{n=0}^{N-1}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^{n}+R_N(x)\\ &=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) \end{aligned} f(x)=n=0N1n!f(n)(x0)(xx0)n+RN(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+...+n!f(n)(x0)(xx0)n+Rn(x)
其中 R n ( x ) = ο ( ( x − x 0 ) n ) R_n(x)=\omicron((x-x_0)^n) Rn(x)=ο((xx0)n).

证明:
R n ( x ) = f ( x ) − p n ( x ) R_n(x)=f(x)-p_n(x) Rn(x)=f(x)pn(x),则
R n ( x 0 ) = R n ′ ( x 0 ) = R n ′ ′ ( x 0 ) = . . . = R n ( n ) ( x 0 ) = 0 R_n(x_0)=R_n'(x_0)=R_n''(x_0)=...=R_n^{(n)}(x_0)=0 Rn(x0)=Rn(x0)=Rn′′(x0)=...=Rn(n)(x0)=0
由于 f ( x ) f(x) f(x) x 0 x_0 x0处有 n n n阶导数,因此 f ( x ) f(x) f(x)必在 x 0 x_0 x0的某邻域内存在 ( n − 1 ) (n-1) (n1)阶导数,从而 R n ( x ) R_n(x) Rn(x)也在该邻域内 n − 1 n-1 n1阶可导,反复应用洛必达法则,得到
lim ⁡ x → x 0 R n ( x ) ( x − x 0 ) n = lim ⁡ x → x 0 R n ′ ( x ) n ( x − x 0 ) n − 1 = lim ⁡ x → x 0 R n ′ ′ ( x ) n ( n − 1 ) ( x − x 0 ) n − 2 = lim ⁡ x → x 0 R n ( n − 1 ) ( x ) n ! ( x − x 0 ) = R n ( n − 1 ) ( x 0 ) = 0 lim ⁡ x → x 0 R n ( n − 1 ) ( x ) − R n ( n − 1 ) ( x 0 ) n ! ( x − x 0 ) = 1 n ! R n ( n ) ( x 0 ) = 0 \begin{aligned} \lim_{x\to x_0}\frac{R_n(x)}{(x-x_0)^n}&=\lim_{x\to x_0}\frac{R_n'(x)}{n(x-x_0)^{n-1}}\\ &=\lim_{x\to x_0}\frac{R_n''(x)}{n(n-1)(x-x_0)^{n-2}}\\ &=\lim_{x\to x_0}\frac{R_n^{(n-1)}(x)}{n!(x-x_0)}\\ &\xlongequal{R_n^{(n-1)}(x_0)=0}\lim_{x\to x_0}\frac{R_n^{(n-1)}(x)-R_n^{(n-1)}(x_0)}{n!(x-x_0)}\\ &=\frac{1}{n!}R_n^{(n)}(x_0)=0 \end{aligned} xx0lim(xx0)nRn(x)=xx0limn(xx0)n1Rn(x)=xx0limn(n1)(xx0)n2Rn′′(x)=xx0limn!(xx0)Rn(n1)(x)Rn(n1)(x0)=0 xx0limn!(xx0)Rn(n1)(x)Rn(n1)(x0)=n!1Rn(n)(x0)=0
因此 R n ( x ) R_n(x) Rn(x) ( x − x 0 ) n (x-x_0)^n (xx0)n的更高阶无穷小,得证。

泰勒(Taylor)中值定理2 如果函数 f ( x ) f(x) f(x) x 0 x_0 x0的某个邻域U(x_0)内具有 n + 1 n+1 n+1阶导数,有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+...+n!f(n)(xx0)n+Rn(x)
其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) ( n + 1 ) R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{(n+1)} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)(n+1)
ξ \xi ξ x 0 x_0 x0 x x x之间的某个值.

导数

定义
设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某个邻域内有定义,当自变量 x x x x 0 x_0 x0处取得增量 Δ x \Delta x Δx(点 x 0 + Δ x x_0+\Delta x x0+Δx仍在该邻域内)是,相应的,因变量取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0);如果 Δ y 与 Δ x \Delta y与\Delta x ΔyΔx之比当 Δ x → 0 \Delta x\to 0 Δx0时的极限存在,那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f'(x_0) f(x0),即
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)
基本初等函数导数

  • 幂函数: f ( x ) = x μ ( μ ∈ R ) , 则 f ′ ( x ) = μ x μ − 1 f(x)=x^{\mu}(\mu \in R), 则f'(x)=\mu x^{\mu-1} f(x)=xμ(μR),f(x)=μxμ1
  • 指数函数: f ( x ) = a x ( a > 0 , a ≠ 1 , a ∈ R ) , 则 f ′ ( x ) = a x ln ⁡ a f(x)=a^x(a>0,a\ne 1, a \in R), 则f'(x)=a^x\ln a f(x)=ax(a>0,a=1,aR),f(x)=axlna
  • 对数函数: f ( x ) = log ⁡ a x ( a > 0 , a ≠ 1 , a ∈ R ) , 则 f ′ ( x ) = 1 x ln ⁡ a f(x)=\log_ax(a>0,a\ne 1, a \in R), 则f'(x)=\frac{1}{x}\ln a f(x)=logax(a>0,a=1,aR),f(x)=x1lna
  • 三角函数: f ( x ) = sin ⁡ x , f ′ ( x ) = cos ⁡ x f(x)=\sin x, f'(x)=\cos x f(x)=sinx,f(x)=cosx
  • 反三角函数: f ( x ) = arcsin ⁡ x , f ′ ( x ) = ? f(x)=\arcsin x,f'(x)=? f(x)=arcsinx,f(x)=?
    证明:
  • 幂函数:
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 ( x + Δ x ) μ − x μ Δ x = lim ⁡ Δ x → 0 x μ ( 1 + Δ x x ) μ − 1 Δ x = μ x μ − 1 \begin{aligned} f'(x)&=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{(x+\Delta x)^{\mu}-x^\mu}{\Delta x}\\ &=\lim_{\Delta x\to 0}x^{\mu}\frac{(1+\frac{ \Delta x}{x})^{\mu}-1}{\Delta x}\\ &=\mu x^{\mu-1} \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔx(x+Δx)μxμ=Δx0limxμΔx(1+xΔx)μ1=μxμ1
  • 指数函数:
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 a ( x + Δ x ) − a x Δ x = lim ⁡ Δ x → 0 a x a Δ x − 1 Δ x = a x ln ⁡ a \begin{aligned} f'(x)&=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{a^{(x+\Delta x)}-a^x}{\Delta x}\\ &=\lim_{\Delta x\to 0}a^x\frac{a^{\Delta x}-1}{\Delta x}\\ &=a^x\ln a \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxa(x+Δx)ax=Δx0limaxΔxaΔx1=axlna
  • 对数函数
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 ln ⁡ ( x + Δ x ) − ln ⁡ x Δ x = lim ⁡ Δ x → 0 ln ⁡ ( 1 + Δ x x ) 1 Δ x = lim ⁡ Δ x → 0 1 x ln ⁡ ( 1 + Δ x x ) x Δ x = 1 x \begin{aligned} f'(x)&=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{\ln{(x+\Delta x)}-\ln x}{\Delta x}\\ &=\lim_{\Delta x\to 0}\ln (1+\frac{\Delta x}{x})^{\frac{1}{\Delta x}}\\ &=\lim_{\Delta x\to 0}\frac{1}{x}\ln (1+\frac{\Delta x}{x})^{\frac{x}{\Delta x}}\\ &=\frac{1}{x} \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxln(x+Δx)lnx=Δx0limln(1+xΔx)Δx1=Δx0limx1ln(1+xΔx)Δxx=x1
  • 三角函数(也可以使用和差化积公式直接求)
    f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 sin ⁡ ( x + Δ x ) − sin ⁡ x Δ x = lim ⁡ Δ x → 0 sin ⁡ x cos ⁡ Δ x + cos ⁡ x sin ⁡ Δ x − sin ⁡ x Δ x = lim ⁡ Δ x → 0 sin ⁡ x ( cos ⁡ Δ x − 1 ) + cos ⁡ x sin ⁡ Δ x Δ x = lim ⁡ Δ x → 0 sin ⁡ x ( cos ⁡ Δ x − 1 ) Δ x + cos ⁡ x sin ⁡ Δ x Δ x = lim ⁡ Δ x → 0 sin ⁡ x ( 1 − 2 sin ⁡ 2 Δ x 2 − 1 ) Δ x + cos ⁡ x sin ⁡ Δ x Δ x = cos ⁡ x \begin{aligned} f'(x)&=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{\sin{(x+\Delta x)}-\sin x}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{\sin x\cos\Delta x+\cos x\sin\Delta x-\sin x}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{\sin x(\cos\Delta x-1)+\cos x\sin\Delta x}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{\sin x(\cos\Delta x-1)}{\Delta x}+\frac{\cos x\sin\Delta x}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{\sin x(1-2\sin^2{\frac{\Delta x}{2}}-1)}{\Delta x}+\frac{\cos x\sin\Delta x}{\Delta x}\\ &=\cos x \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxsin(x+Δx)sinx=Δx0limΔxsinxcosΔx+cosxsinΔxsinx=Δx0limΔxsinx(cosΔx1)+cosxsinΔx=Δx0limΔxsinx(cosΔx1)+ΔxcosxsinΔx=Δx0limΔxsinx(12sin22Δx1)+ΔxcosxsinΔx=cosx
    隐函数求导
    e y + x y − e = 0 e^y+xy-e=0 ey+xye=0确定的隐函数的导数 d y d x \frac{dy}{dx} dxdy,两边同时求导得到
    e y ⋅ d y d x + y + x d y d x = 0    ⟹    d y d x = − y d y + x e^y\cdot\frac{dy}{dx}+y+x\frac{dy}{dx}=0\\ \implies \frac{dy}{dx}=\frac{-y}{d^y+x} eydxdy+y+xdxdy=0dxdy=dy+xy
    带参数的方程求导
    { x = φ ( t ) y = ψ ( t ) , 则 d y d x = d y d t ⋅ d t d x = ψ ′ ( x ) φ ′ ( x ) \begin{cases} x=\varphi(t)\\ y=\psi(t) \end{cases},\\ 则\frac{dy}{dx}=\frac{dy}{dt}\cdot\frac{dt}{dx}=\frac{\psi'(x)}{\varphi'(x)} {x=φ(t)y=ψ(t)dxdy=dtdydxdt=φ(x)ψ(x)

反函数求导法则
x = f − 1 ( y )    ⟹    1 = f − 1 ( y ) ⋅ d y d x x=f^{-1}(y)\\ \implies 1= f^{-1}(y)\cdot \frac{dy}{dx} x=f1(y)1=f1(y)dxdy
证明:
[ f − 1 ( y ) ] ′ = lim ⁡ Δ y → 0 f − 1 ( y + Δ y ) − f − 1 ( y ) Δ y = lim ⁡ Δ y → 0 ( x + Δ x ) − x Δ y = lim ⁡ Δ y → 0 Δ x Δ y = lim ⁡ Δ y → 0 1 Δ y Δ x = 1 f ′ ( y ) \begin{aligned} [f^{-1}(y)]' &=\lim_{\Delta y\to 0}\frac{f^{-1}(y+\Delta y)-f^{-1}(y)}{\Delta y}\\ &=\lim_{\Delta y\to 0}\frac{(x+\Delta x)-x}{\Delta y}\\ &=\lim_{\Delta y\to 0}\frac{\Delta x}{\Delta y}\\ &=\lim_{\Delta y\to 0}\frac 1{\frac{\Delta y}{\Delta x}}\\ &=\frac 1{f'(y)} \end{aligned} [f1(y)]=Δy0limΔyf1(y+Δy)f1(y)=Δy0limΔy(x+Δx)x=Δy0limΔyΔx=Δy0limΔxΔy1=f(y)1
举例:
y = f ( x ) = a r c s i n x ,求 f ′ ( x ) y=f(x)=arcsin x,求f'(x) y=f(x)=arcsinx,求f(x)
{ y = a r c s i n x x = s i n y y ′ = 1 x ′ = 1 c o s y = 1 c o s ( a r c s i n x ) \begin{aligned} \begin{cases} y&=arcsin x\\ x&=sin y\\ \end{cases}\\ y' &=\frac 1{x'}=\frac 1{cos y} = \frac 1{cos (arcsin x)} \end{aligned} {yx=arcsinx=sinyy=x1=cosy1=cos(arcsinx)1
使用图形法对导数进行化简,假设三角形三边为 a , b , c , a 对角为 θ a,b,c, a对角为\theta a,b,ca对角为θ
则有:
x = s i n θ = a c    ⟹    θ = a r c s i n x    ⟹    c o s a r c s i n x = c o s θ = b c = c 2 − a 2 c = 1 − a 2 c 2 = 1 − x 2    ⟹    y ′ = 1 − x 2 x = sin \theta = \frac a c\\ \implies \theta = arcsin x\\ \implies cos arcsinx = cos\theta = \frac b c = \frac{\sqrt{c^2-a^2}}{c} =\sqrt {1-\frac{a^2}{c^2}} = \sqrt{1-x^2}\\ \implies y'=\sqrt{1-x^2} x=sinθ=caθ=arcsinxcosarcsinx=cosθ=cb=cc2a2 =1c2a2 =1x2 y=1x2

微分定义
设函数 y = f ( x ) y=f(x) y=f(x)在某区间内有定义, x 0 x_0 x0 x 0 + Δ x x_0+\Delta x x0+Δx在这个区间内,如果函数的增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)可表示为 Δ y = A Δ x + ο ( Δ x ) \Delta y=A\Delta x+\omicron(\Delta x) Δy=AΔx+ο(Δx),其中 A A A是不依赖于 Δ x \Delta x Δx的常数,那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0是可微的,二 A Δ x A\Delta x AΔx叫做函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0响应于自变量 Δ x \Delta x Δx的微分,记作 d y dy dy,即 d y = A Δ x dy=A\Delta x dy=AΔx
泰勒(Taylor)中值定理
如果函数 f ( x ) f(x) f(x) x 0 x_0 x0处具有 n n n阶导数,那么存在 x 0 x_0 x0的一个邻域,对于该邻域内的任一 x x x,有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) = ∑ i = 0 n f ( i ) ( x 0 ) i ! ( x − x 0 ) i + R n ( x ) \begin{aligned} f(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)\\ &=\sum_{i=0}^{n}\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i+R_n(x) \end{aligned} f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2+...+n!f(n)(x0)(xx0)n+Rn(x)=i=0ni!f(i)(x0)(xx0)i+Rn(x)
其中 R n ( x ) = ο ( ( x − x 0 ) n ) R_n(x)=\omicron((x-x_0)^n) Rn(x)=ο((xx0)n)
证明:
lim ⁡ x → x 0 R n ( x ) ( x − x 0 ) n = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) − ∑ i = 1 n f ( i ) ( x 0 ) n ! ( x − x 0 ) n ( x − x 0 ) n \begin{aligned} \lim_{x\to x_0}\frac{R_n(x)}{(x-x_0)^n}&=\lim_{x\to x_0}\frac{f(x)-f(x_0)-\sum\limits_{i=1}^{n}\frac{f^{(i)}(x_0)}{n!}(x-x_0)^n}{(x-x_0)^n} \end{aligned} xx0lim(xx0)nRn(x)=xx0lim(xx0)nf(x)f(x0)i=1nn!f(i)(x0)(xx0)n
x → x 0 x\to x_0 xx0时,上式的分子分母都趋向于0,可以使用 n n n次洛必达法则,得到上式结果为
lim ⁡ x → x 0 R n ( x ) ( x − x 0 ) n = lim ⁡ x → x 0 f ( n ) ( x ) − f ( n ) ( x 0 ) n ! = 0 \lim_{x\to x_0}\frac{R_n(x)}{(x-x_0)^n}=\lim_{x\to x_0}\frac{f^{(n)}(x)-f^{(n)}(x_0)}{n!}=0 xx0lim(xx0)nRn(x)=xx0limn!f(n)(x)f(n)(x0)=0
R n ( x ) R_n(x) Rn(x) ( x − x 0 ) n (x-x_0)^n (xx0)n的更高阶无穷小。
f ( x ) f(x) f(x)在该邻域内有 n + 1 n+1 n+1阶导数,则
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) ( n + 1 ) ( 其中 ξ 介于 x 和 x 0 之间 ) R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{(n+1)}(其中\xi介于x和x_0之间) Rn(x)=(n+1)!f(n+1)(ξ)(xx0)(n+1)(其中ξ介于xx0之间)
同样使用 n n n次洛必达法则,然后使用拉格朗日中值定理,即可证明。
如果使用泰勒展开式求解函数的近似值,则其收敛速度是阶乘速度的。例如求自然对数的底 e e e
若 f ( x ) = e x ,则 e = e 1 。取 x 0 = 0 , x = 1 ,则有 f ( x ) = ∑ i = 0 n f ( i ) ( x − x 0 ) i = 1 + 1 + 1 2 ! + . . . + 1 i ! 若f(x)=e^x,则e=e^1。取x_0=0,x=1,则有\\ f(x)=\sum_{i=0}^{n}f^{(i)}(x-x_0)^i=1+1+\frac{1}{2!}+...+\frac{1}{i!} f(x)=ex,则e=e1。取x0=0,x=1,则有f(x)=i=0nf(i)(xx0)i=1+1+2!1+...+i!1
函数单调性
设函数 y = f ( x ) 在 [ a , b ] y=f(x)在[a,b] y=f(x)[a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导。
1)若在 ( a , b ) (a,b) (a,b) f ′ ( x ) ≥ 0 f'(x)\ge 0 f(x)0,且等号仅在有限多个点处成立,那么函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上单调增加;
2)若在 ( a , b ) (a,b) (a,b) f ′ ( x ) ≤ 0 f'(x)\le 0 f(x)0,且等号仅在有限多个点处成立,那么函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上单调减少;

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
高等数学学霸笔记PDF是一份非常有价值的学习材料。高等数学是大学数学的重要组成部分,为日后学习更为深入的数学课程打下坚实基础。学霸笔记是指在学习过程中,能够领先于其他同学,掌握更全面的知识并且能够提供有效学习方法和技巧。 高等数学学霸笔记PDF的出现,为广大学生提供了一种高效的学习方式。首先,学霸笔记PDF中的内容通常比教材更为全面和深入,涵盖了各个知识点的详细解释和推导,同时还会提供一些别出心裁的例题和思考题,以便读者更好地理解和应用这些知识。其次,学霸笔记PDF中常常会给出一些学习方法和技巧,帮助读者更高效地掌握和运用所学知识。这些方法和技巧经过学霸亲身实践并总结,有助于读者提高学习效率和成绩。 高等数学学霸笔记PDF的优点不止于此。首先,它的便携性非常好,可以在电脑上、平板上或者手机上随时随地进行学习。其次,学霸笔记PDF的内容通常都经过学霸的筛选和整理,是一份经过精心编辑的资料,较教科书更为简明扼要,使得读者在有限的时间内能够快速掌握重点和难点。再者,学霸笔记PDF可以供广大学生交流和分享,有助于促进学习氛围和共同进步。 总之,高等数学学霸笔记PDF是一份宝贵的学习资料,能够帮助学生更好地掌握和应用高等数学知识。在学习过程中,读者可以结合教材和学霸笔记PDF进行学习,以达到更好的学习效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值