异型卵问题

【问题描述】
我们探索宇宙是想了解浩瀚星空的奥秘,我们却很少意识到宇宙深处藏匿的危险,他们无时无刻不紧盯着我们的地球。
如果外星人拜访我们,结果可能与哥伦布当年踏足美洲大陆不会有什么两样,这是历史,也是现实。
在PS星球上发现的休眠异形卵,其外表与常见的卵不同,表面被一层石墨覆盖。当人走进时,那层石墨开始消融,
能看到里面的异形卵正在活动,异形卵是活物,具备一些热量或压力传感器这些基本的中枢神经系统,通过感知周围的热量,
选择量最大处寄生。不过,假如周围有不合适被寄生处,异形卵就选择休眠。
周围的热量可以一串整数a1,a2,....,an来表示,异形卵具有一定的长度L,
异形卵总是选择ai+a(i+1)...+a(i+L-1)达到最大值处寄生,若周围的热低于0,异形卵则选择休眠。
异形卵是如何感知它的寄生处呢?
【输入】
第一行:K ,表示有多少测试数据。
接下来对每组测试数据有2行,
第1行:L N,分别表示异形卵本身的长度和异形卵周围的热量长度;
第2行:a1 a2 ... aN,分别对应异形卵周围的热量;
【输出】
对于每组测试数据,输出一行:异形卵能寄生的起始位置。若有多处可以寄生,则选择小的起始位置。若无处可以寄生,则输出0。
【约束条件】
2<=K<=5;L<=N且1<=L<=10;1<=N<=1000;-100<=ai<=100;
数据之间有一个空格。
【样例输入】
2
3 5
30 0 100 -30 100
3 5
-100 80 -80 -100 80
【样例输出】
3
0

#include<stdio.h>
int main()
{
    int T,L,n,a;
    int max,count,i;
    int sum[1010]={0};
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&L,&n);
        max=-100;
        count=0;
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a);
            sum[i]=sum[i-1]+a;
        }
        for(i=n;i>=L;i--)
        {
            sum[i]-=sum[i-L];//是很好的方法,先算出所有的和,再减去对应要求的,非常简便
            if(max<=sum[i]&&sum[i]>0)
            {
                max=sum[i];
                count=i-L+1;
            }
        }
        printf("%d\n",count);
    }
    return 0;
}
异形零件下料问题是一个经典的优化问题,通常出现在制造业中。目标是通过优化切割方案,最小化材料浪费。解决这类问题通常需要使用算法,如线性规划、动态规划或遗传算法等。 以下是一个使用Python和线性规划库(PuLP)来解决异形零件下料问题的示例代码: ```python import pulp # 定义零件和材料的尺寸 parts = { 'A': {'width': 2, 'height': 3}, 'B': {'width': 3, 'height': 4} } material_width = 10 material_height = 8 # 创建线性规划问题 prob = pulp.LpProblem("Cutting_Stock_Problem", pulp.LpMinimize) # 定义变量 # x[i][j] 表示在材料上切割零件i的方式j的数量 x = pulp.LpVariable.dicts("cut", ((part, cut) for part in parts for cut in range(1, 100)), lowBound=0, cat='Integer') # 定义目标函数 prob += pulp.lpSum(x) # 定义约束条件 # 1. 宽度约束 for cut in range(1, 100): prob += pulp.lpSum([parts[part]['width'] * x[(part, cut)] for part in parts]) <= material_width # 2. 高度约束 for cut in range(1, 100): prob += pulp.lpSum([parts[part]['height'] * x[(part, cut)] for part in parts]) <= material_height # 3. 零件数量约束 # 假设我们需要至少n个零件A和m个零件B n = 10 m = 8 prob += pulp.lpSum([x[('A', cut)] for cut in range(1, 100)]) >= n prob += pulp.lpSum([x[('B', cut)] for cut in range(1, 100)]) >= m # 解决线性规划问题 prob.solve() # 输出结果 print("Status:", pulp.LpStatus[prob.status]) for v in prob.variables(): if v.varValue > 0: print(v.name, "=", v.varValue) print("Total cuts =", pulp.value(prob.objective)) ``` 这个代码示例展示了如何使用线性规划来解决异形零件下料问题。具体步骤如下: 1. 定义零件和材料的尺寸。 2. 创建线性规划问题。 3. 定义变量和目标函数。 4. 定义约束条件。 5. 解决线性规划问题并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值