1053. Path of Equal Weight (30)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bifor i=1, ... k, and Ak+1 > Bk+1.
Sample Input:20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2
推荐指数:※※
来源:http://pat.zju.edu.cn/contests/pat-a-practise/1053
树的深度遍历
#include<iostream> #include<queue> #include<vector> #include<utility> #include<string.h> using namespace std; #define N 101 vector< int > edge[101]; vector<int> path; int nodes,no_leafs,s,*weight; bool *visited; bool dfs(int curr,int curr_node){ int i; curr+=weight[curr_node]; if(curr>s){ return false; } else if(curr==s&&edge[curr_node].size()==0){ path.push_back(weight[curr_node]); cout<<path[0]; for(i=1;i<path.size();i++) cout<<" "<<path[i]; cout<<endl; path.pop_back(); } else if(curr<s&&edge[curr_node].size()>0){ int max_w,max_id; path.push_back(weight[curr_node]); do{ max_w=-1; max_id=-1; for(i=0;i<edge[curr_node].size();i++){ if(visited[edge[curr_node][i]]==false&&weight[edge[curr_node][i]]>max_w){ max_w=weight[edge[curr_node][i]]; max_id=edge[curr_node][i]; } } if(max_id!=-1){//handle its max node which is not visisted visited[max_id]=true; dfs(curr,max_id); } }while(max_id!=-1); visited[curr_node]=true;//current node is handle ok path.pop_back(); } return true; } int main() { int i,j; cin>>nodes>>no_leafs>>s; weight=new int[nodes]; visited=new bool[nodes]; for(i=0;i<nodes;i++) cin>>weight[i]; for(i=0;i<no_leafs;i++){ int tmp_node,k,tmp_edge; cin>>tmp_node>>k; for(j=0;j<k;j++){ cin>>tmp_edge; edge[tmp_node].push_back(tmp_edge); } } memset(visited,0,nodes*sizeof(bool)); dfs(0,0); return 0; }