卷积神经网络实现mnist手写数据集分类(tf2.0-gpu)

卷积神经网络实现mnist手写数据集分类(tf2.0-gpu)

1.加载mnist数据集的方法

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
会自动下载,但有时因网络原因或其他原因,下载速度会很慢,耗时很久,解决办法如下:
先下载好mnist.npz文件,放到C:\Users\Administrator\.keras\datasets文件夹下会很快的加载好数据,不存在datasets文件夹可以自己新建一个,下载mnist.npz的地址可以参考:https://blog.csdn.net/qq_37337494/article/details/102313480

2.数据归一化处理

在这里插入图片描述

3.建立模型

在这里插入图片描述
两个卷积层, 接下来两个全连接层,在添加全连层之前 需要先对数据添加扁平化处理,将多维数据拉直成一维的,即Flatten()的作用。
最后一个全连层使用的去线性化激活函数是sigmoid,输出样本在每个标签对应的概率值。

4.模型结构

在这里插入图片描述

5.编译和训练模型

在这里插入图片描述
可以看到最终模型的准确率非常高。

6.注意事项

使用GPU版本的tensorflow,有时候会出现gpu显存不足的情况,可以在导入模块后按需申请GPU:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值