汉诺塔的递归解法

本文详细介绍了汉诺塔问题及其递归解法。通过分析问题,提出了当n=1时的简单移动,以及n>1时的三步解决策略。接着展示了具体的4个盘子的移动过程,并分析了随着盘子数量增加,移动次数的递推公式Sum(n)=2n-1,揭示了递归解法可能导致的效率问题。
摘要由CSDN通过智能技术生成

汉诺塔问题:

  

  有n个不同大小的盘子和三根木桩。一开始,所有的盘子都按照大小顺序套在第一根木桩上,最大的盘子在底部,最小的在顶部。我们要把所有的盘子都移动到第三根木桩上去,必要时可借助第二根木桩。每次只能移动一个盘子,不能把较大的盘子放在较小盘子的上面。

      

传说当64个圆盘从梵塔上移走时,世界末日也就来临了……

 

 

问题分析:

 

  当n=1时,直接将盘子从A移动到C;

  当n>1时,分三段:

  1. 将n-1个盘子从A移动到B
  2. 将第n个盘子从A移动到C
  3. 将n-1个盘子从B移动到C
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值