Numpy
zhubao124
这个作者很懒,什么都没留下…
展开
-
Numpy基础知识(1)
开发环境搭建参考:1、Python(Anaconda)集成开发环境搭建2、Eclipse + PyDev 开发python程序 一、Numpy介绍 1、NumPy是什么NumPy是一个开源的Python科学计算库。全称:Numerical Python 2、NumPy有什么功能NumPy主要的功能之一是用来操作数组和矩阵。NumPy是科学计算、深度学习等高端领...原创 2018-06-04 22:15:07 · 474 阅读 · 0 评论 -
NumPy常用函数(5)-- 寻找最大值和最小值,以及计算数组的取值范围
通常,我们不仅想知道一组数据的平均值,还希望知道数据的极值以及完整的取值范围——最大值和最小值。 Numpy中min函数和max函数可以计算出最小值和最大值;ptp函数可以计算数组的取值范围,即该函数返回的是数组元素的最大值和最小值直接的差值(max(array) - min(array))。 最大值/最小值和取值范围实例:from numpy import *...原创 2018-06-18 09:15:57 · 20276 阅读 · 0 评论 -
NumPy常用函数(4)-- 时间加权平均价格
在经济学中,TWAP(Time-Weighted Average Price,时间加权平均价格)是另一种“平均”价格的指标。其实TWAP只是一个变种而已,基本的思想就是最近的价格重要性大一些,所以我们应该对近期的价格给以较高的权重。 时间加权平均价格实例:from numpy import *#TWAP (Time-Weighted Average Price),时间...原创 2018-06-18 09:02:13 · 4011 阅读 · 0 评论 -
NumPy常用函数(3)-- 成交量加权平均价格和算数平均值
VWAP(Volume-Weighted Average Price,成交量加权平均价格)是一个非常重要的经济学量,它代表着金融资产的“平均”价格。某个价格的成交量越高,该价格所占的权重就越大。VWAP就是以成交量为权重计算出来的加权平均值,常用于算法交易。 计算成交量加权平均价格实例:from numpy import *price,weights=loadt...原创 2018-06-17 20:45:18 · 5331 阅读 · 0 评论 -
NumPy常用函数(2)-- 读写CSV文件
Numpy读写CSV文件。CSV文件:通过逗号分隔的文本文件。 读写CSV文件实例:from numpy import *a = arange(20).reshape(4,5)print(a)#delimiter:分隔符属性,指定以什么字符分隔;对一维数组不起作用savetxt('a.txt',a,fmt='%d',delimiter=',')#以逗号,分...原创 2018-06-17 20:25:48 · 11937 阅读 · 1 评论 -
NumPy常用函数(1)-- 将NumPy数组保存成文本文件,并装载数组文件
Numpy通过savetxt函数和loadtxt函数读写文件 Numpy读写文件实例:from numpy import *a = arange(20)print(a)#fmt属性默认是floatsavetxt('a.txt',a,fmt='%d') #将数组a按照int保存到a.txt中savetxt('b.txt',a,fmt='%.2f') #将...原创 2018-06-17 20:13:59 · 6293 阅读 · 0 评论 -
NumPy数组(9)-- 将NumPy数组转换为Python列表
可以利用tolist函数将Numpy中的数组转换为Python中的列表,还可以用astype指定转换数组的数据类型。from numpy import *#tolist astypea = array([1,2,3,4,5,6])print(a)print(a.tolist()) #将numpy中的数组转换为python中的列表print("-----------...原创 2018-06-17 16:30:58 · 28941 阅读 · 0 评论 -
NumPy数组(8)-- 数组的属性
前面我们提到了shape和dtype属性,ndarray对象还要很多其他的属性,下面一一介绍。 shape:通过元组的形式返回数组每一维度元素的个数。 dtype:返回数组的元素类型 ndim属性 给出数组的维数,或数组轴的个数: size属性 给出数组元素的总元素个数: itemsize属性 给出数组中元...原创 2018-06-17 16:17:11 · 879 阅读 · 0 评论 -
NumPy常用函数(8)-- 根据日期分析股票涨幅
首先,我们要读入收盘价数据。随后,根据星期几来切分收盘价数据,并分别计算平均价格。最后,我们将找出一周中哪一天的平均收盘价最高,哪一天的最低。 NumPy是面向浮点数运算的,因此读取日期时要做一些专门的处理。如果就按如下代码读取数据会出现异常:dates,close = loadtxt('data.csv',delimiter=',',usecols=(1,6),un...原创 2018-06-24 14:25:00 · 2239 阅读 · 0 评论 -
NumPy常用函数(7)-- 计算股票收益率和波动率
收盘价的分析常常是基于股票收益率的。股票收益率又可以分为简单收益率和对数收益率。 简单收益率:是指相邻两个价格之间的变化率。 对数收益率:是指所有价格取对数后两两之间的差值。 简单收益率的计算 NumPy中的diff函数可以返回一个由相邻数组元素的差值构成的数组。不过需要注意的是,diff返回的数组比收盘价数组少一个元素。 对...原创 2018-06-24 09:48:04 · 53955 阅读 · 10 评论 -
NumPy数组(5)-- 改变数组维度的几种方法
一、修改数组维度的几种方法 reshape、resize、ravel、flatten、transpose、元组,下面一一介绍。 二、修改数组维度方法的实例#NumPy数组:改变数组维度的几种方法from numpy import *#arange生成一维数组,reshape改变数组的维度b = arange(24).reshape(2,3,4)print(...原创 2018-06-07 22:06:47 · 8201 阅读 · 1 评论 -
NumPy数组(7)-- 数组的分割
NumPy数组可以进行水平、垂直或深度分割,相关的函数有hsplit、vsplit、dsplit和split。我们可以将数组分割成相同大小的字数组,也可以指定原数组中需要分割的位置。一、水平分割(hsplit): 1、水平分割: 即把数组沿着水平方向分割。 2、实例:a = arange(9).reshape(3,3)print(a...原创 2018-06-14 14:04:17 · 5880 阅读 · 0 评论 -
NumPy数组(6)-- 数组的组合
NumPy数组有水平组合、垂直组合和深度组合等多种组合方式,下面一一介绍。一、水平组合(hstack) 1、水平组合: 两个数组的行数必须相同(不同会抛出异常),列数可以不同。 2、实例:from numpy import *a = arange(9).reshape(3,3)b = a * 3 #将数组a...原创 2018-06-13 22:01:14 · 963 阅读 · 0 评论 -
NumPy数组(4)-- 自定义数组元素的数据类型dtype
一、自定义数组元素的数据类型概述 根据不同的应用场景,需要自定义数据类型。类似于C语言中的自定义结构体。 二、数据类型 NumPy 支持比 Python 更多种类的数值类型。 下表显示了 NumPy 中定义的不同标量数据类型。序号 数据类型及描述 1. bool_存储为一个字节的布尔值(真或假) 2. int_默认整数,相当于 C 的...原创 2018-06-06 21:55:06 · 12510 阅读 · 0 评论 -
NumPy数组(3)-- 获取多维数组中单个数组值和数组的分片
一、获取单个数组值和数组的分片实例#NumPy数组--获取单个数组值和数组的分片from numpy import *#列表分片:开始索引,结束索引,步长(左闭右开)list = [1,2,3,4,5,6]print(list[1:4])print(list[1::2])print("*****************************")a = array([[1,...原创 2018-06-06 21:41:30 · 4616 阅读 · 0 评论 -
Numpy数组(2)-- 创建ndarray数组
一、创建ndarray数组描述 arange函数创建的数组作为列表元素,把这个列表作为参赛传递给array函数,就可以创建多维数组。 二、创建ndarray数组实例#NumPy数组--利用array创建多维数组from numpy import *a = arange(5) #创建一个一维数组print(a) prin...原创 2018-06-06 21:36:48 · 2097 阅读 · 0 评论 -
NumPy常用函数(6)-- 计算中位数和方差
NumPy中可以通过median函数计算中位数;通过var函数计算方差。方差是指各个数据与所有数据算术平均数的离差平方和除以数据个数所得到的值。 计算中位数和方差实例:#NumPy常用函数:计算中位数和方差from numpy import *#1,2,3,4,5a = array([4,5,2,3,1])print(median(a))price=loadtx...原创 2018-06-18 10:02:52 · 26722 阅读 · 0 评论