自然语言处理之话题建模:BERTopic教程
自然语言处理基础
自然语言处理简介
自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,它研究如何让计算机理解、解释和生成人类语言。NLP 的应用广泛,包括但不限于机器翻译、情感分析、问答系统、文本摘要、语音识别等。随着深度学习技术的发展,NLP 领域取得了显著的进展,尤其是基于 Transformer 的模型,如 BERT,极大地提升了自然语言处理的性能。
文本预处理技术
文本预处理是自然语言处理中的关键步骤,它包括多个子任务,旨在将原始文本转换为机器学习模型可以理解的格式。以下是一些常见的文本预处理技术:
1. 分词(Tokenization)
分词是将文本分割成单词或子词的过程。在中文中,由于没有明显的空格分隔,分词尤为重要。例如,将句