自然语言处理之话题建模:BERTopic教程

自然语言处理之话题建模:BERTopic教程

在这里插入图片描述

自然语言处理基础

自然语言处理简介

自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,它研究如何让计算机理解、解释和生成人类语言。NLP 的应用广泛,包括但不限于机器翻译、情感分析、问答系统、文本摘要、语音识别等。随着深度学习技术的发展,NLP 领域取得了显著的进展,尤其是基于 Transformer 的模型,如 BERT,极大地提升了自然语言处理的性能。

文本预处理技术

文本预处理是自然语言处理中的关键步骤,它包括多个子任务,旨在将原始文本转换为机器学习模型可以理解的格式。以下是一些常见的文本预处理技术:

1. 分词(Tokenization)

分词是将文本分割成单词或子词的过程。在中文中,由于没有明显的空格分隔,分词尤为重要。例如,将句

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值