自然语言处理之话题建模:Non-Negative Matrix Factorization (NMF)与词频-逆文档频率(TF-IDF)计算

自然语言处理之话题建模:Non-Negative Matrix Factorization (NMF)与词频-逆文档频率(TF-IDF)计算

在这里插入图片描述

自然语言处理基础

文本预处理

文本预处理是自然语言处理中的关键步骤,它包括将原始文本转换为计算机可以理解和处理的格式。预处理通常涉及以下操作:

  • 转换为小写:确保文本中所有单词都以小写形式出现,避免大小写引起的重复。
  • 去除标点符号:标点符号通常不包含语义信息,可以被去除。
  • 去除数字和特殊字符:除非数字和特殊字符对分析有特殊意义,否则通常会被去除。

示例代码

import re

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值