火灾和烟雾检测信号处理与数据分析
信号处理基础
在火灾和烟雾检测系统中,信号处理是至关重要的一步。信号处理的目标是从传感器采集的原始数据中提取出有用的信息,以便进行后续的分析和决策。常见的传感器包括烟雾传感器、热传感器、火焰传感器等。这些传感器采集的数据通常包含噪声和干扰,需要通过一系列的信号处理技术进行滤波和特征提取。
噪声滤波
噪声滤波是信号处理的第一步,目的是去除传感器数据中的随机噪声和干扰。常见的噪声滤波技术包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。这些滤波器可以通过不同的数学方法实现,例如傅里叶变换、小波变换等。
低通滤波器
低通滤波器用于去除高频噪声,保留低频信号。常用的方法包括简单的移动平均滤波和更复杂的IIR滤波器。
移动平均滤波器示例
import numpy as n