动态规划经典题目

动态规划以及经典习题

//***没有套路具体问题具体分析***//

1.数字三角形问题
有一个由非负整数组成的三角形,第一行只有一个数,除了最下行之外每个数的左下方和右下方各有一个数.

1

3 2

4 10 1

4 3 2 20

从第一行的数开始,每次可以往左下或右下走一格,直到走到最下行,把沿途经过的数全部加起来,如何走才能使得这个和尽量大?

输入:三角形的行数n,数字三角形的各个数(从上到下,从左到右)

输出:最大的和。

运行结果:

状态:summax[i][j]表示坐标[i][j]的点到最后一行的最大值
状态转移方程:
summax[i][j]=max(maxsum[i+1][j],summax[i+1][j+1])+a[i][j]
采用从下往上倒退的方法

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int m,n,a[100][100],summax[100][100];	
	cin>>m;
	for(int i=1;i<=m;i++)
		for(int j=1;j<=i;j++)
			cin>>a[i][j];
	memset(summax,0,sizeof(summax));
	for(int i=m;i>0;i--)
	{
		for(int j=1;j<=m;j++)
		{
			if(i==m)
				summax[i][j]=a[i][j];
			else
				summax[i][j]=max(summax[i+j][j],summax[i+1][j+1])+a[i][j];
				 
		} 
	}
	cout<<summax[1][1]<<endl;
} 

2.最长上升子序列

题目描述:
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

最长上升子序列:
状态:summax[i]来表示以[i]为结尾的最长的子序列的长度
状态转移方程:
找到a[j]<a[i] (j<i) :summax[i]=max{ 1<=j<i且a[i]>a[j]}+1
找不到 :summax[i]=1;

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int m,a[100],b[100];
	cin>>m;
	for(int i=0;i<m;i++)
	{
		cin>>a[i];
		b[i]=1;
	}
	for(int i=1;i<m;i++)
		for(int j=0;j<i;j++)
			if(a[j]<a[i])
				b[i]=max(b[j]+1,b[i]);
	cout<<b[m-1];
} 

最长公共子序列
在这里插入图片描述
最长公共子序列:
已知字符串a ,b
m,n分别表示两字符串的长度
找状态:summax[i][j] 表示字符串a的前i个字符,和字符串b的前j个字符公共子序列的长度
必有 summax[i][0]=0 summax[0][i]=0;
此题便是求summax[m-1][n-1];
状态转移方程:
if(a[i]==a[j])
summax[i][j]=summax[i-1][j-1]+1;
else
summax[i][j]=max(summax[i-1][j],summax[i][j-1])

#include<bits/stdc++.h>
using namespace std;
int main()
{
	string a,b;
	cin>>a>>b;
	int summax[100][100],m,n;
	memset(summax,0,sizeof(summax));  
	m=a.length();n=b.length();
	for(int i=0;i<m;i++)
		summax[0][i]=1;
	for(int j=0;j<n;j++)
		summax[j][0] =1;
	for(int i=1;i<m;i++)
	{
		for(int j=1;j<n;j++)
		{
			if(a[i]==b[j])
				summax[i][j]=summax[i-1][j-1]+1;
			else
				summax[i][j]=max(summax[i-1][j],summax[i][j-1]);
		}
	}
	cout<<summax[m-1][n-1];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱贝贝呗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值