求一个数的算术平方根

写一段程序求出一个数的算术平方根:

#include<iostream>
using namespace std;
#define e 0.001
double sqrt(double a)
{
		double x,y;
		x=a/2;
		y=x+1+e;
		while(x-y>e||y-x>e)
		{
				y=x;
				x=(x+a/x)/2;
		}
		return x;
}
int main()
{
		double a;
		cin>>a;
		cout<<sqrt(a);
		return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
任意实c的算术平方根g的算法如下: 1. 初始化迭代的初始值guess为c的一半:guess = c / 2 2. 利用牛顿迭代法来逼近算术平方根,迭代的终止条件为前后两次迭代结果的差的绝对值小于一个设定的精度值ε。 3. 在每次迭代中,更新guess的值:guess = (guess + c / guess) / 2 4. 当满足终止条件时,输出当前的guess值作为算术平方根的近似值。 牛顿迭代法是一种逼近方法,通过不断逼近的方式寻找函的零点。在这里,我们将平方根解问题转化为了解函f(x) = x^2 - c的的问题。其中,guess是我们在每次迭代中作为近似值的猜测解。通过进行迭代运算,每一次迭代guess都会逐渐接近实际的算术平方根。 牛顿迭代法的原理是,通过利用函的泰勒级来逼近函的零点。在这里,我们使用了一阶近似:f(x) ≈ f(guess) + f'(guess)(x - guess)。将f(x) = 0代入该式子,可以得到x = guess - f(guess) / f'(guess)。将f(x) = x^2 - c代入上述式子,可以得到迭代公式:guess = (guess + c / guess) / 2。 通过不断迭代,guess会逐渐接近真实的算术平方根g。当前后两次迭代结果的差的绝对值小于设定的精度值ε时,我们可以认为找到了一个接近于g的解。将此解作为算术平方根g的近似值输出。 需要注意的是,初始的猜测解guess的选择会影响算法的收敛速度和精度。通常情况下,取c的一半作为初始的猜测解可以提供较好的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值