Canonical Correlation Analysis(一)

本文介绍了典型相关分析(Canonical Correlation Analysis, CCA)的基本原理和应用。CCA是一种经典的统计学习方法,旨在寻找两个随机变量在特定基向量上的最大相关性投影。文章详细解释了如何通过数学公式定义这一目标,并提供了求解CCA问题的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.sina.com.cn/s/blog_a8fead9b01016jdm.html

典型相关分析(Canonical Correlation Analysis)是统计学习方法中一个经典算法,它和PCA,LDA等等矩阵分析算法非常类似,在CCA中我们所关心的问题是找到一个基向量,使得在空间内的两个随机变量在这个基向量上的投影的相关性最大。


考虑一个多维随机向量(x,y),我们关于这个向量有若干组观测:
Canonical <wbr>Correlation <wbr>Analysis(一)
我们用Sx和Sy分别表示x和y的观测:
Canonical <wbr>Correlation <wbr>Analysis(一)
关于一个向量w_x,我们计算所有向量x_i在w_x上的投影:
Canonical <wbr>Correlation <wbr>Analysis(一)
同理,
Canonical <wbr>Correlation <wbr>Analysis(一)
在CCA中,我们试图寻找w_x和w_y使得上述两式的相关系数最大:
Canonical <wbr>Correlation <wbr>Analysis(一)
由于S_x和S_y是x和y的观测向量组,因此上式有其平均期望层面上的意义:
Canonical <wbr>Correlation <wbr>Analysis(一)
借助Covariance矩阵,上式可以写成如下形式:
Canonical <wbr>Correlation <wbr>Analysis(一)
求解CCA的算法很简单,注意到目标函数和w_x与w_y的Scale无关,因此可以假设:
Canonical <wbr>Correlation <wbr>Analysis(一)
此时目标函数的Lagrangian如下:
Canonical <wbr>Correlation <wbr>Analysis(一)
上式关于w_x和w_y求导:
Canonical <wbr>Correlation <wbr>Analysis(一)
Canonical <wbr>Correlation <wbr>Analysis(一)
将上面一式乘w_x减去二式乘w_y可得:
Canonical <wbr>Correlation <wbr>Analysis(一)
由此可得lambda_x等于lambda_y,于是:
Canonical <wbr>Correlation <wbr>Analysis(一)
代入一式:
Canonical <wbr>Correlation <wbr>Analysis(一)
这是一个广义特征值问题,因此可以使用相关算法进行求解。
### 回答1: 规范相关分析(Canonical Correlation Analysis)是种多元统计分析方法,用于研究两组变量之间的关系。它可以找到两组变量之间的最大相关性,并将它们转化为组规范变量,以便更好地理解它们之间的关系。规范相关分析在社会科学、生物医学、工程学等领域都有广泛的应用。 ### 回答2: 正交化回归与正交化主成分分析都是寻找两组变量之间的关系,并将它们投影到彼此相交的新坐标轴上,但这两种方法都假设两组变量是互相独立的。如果两组变量不独立,可以考虑使用典型相关分析(Canonical Correlation AnalysisCCA)。 典型相关分析是种多元统计方法,用于分析两组变量之间的关系。它探究了两组变量之间的最大相关性,即找到组线性组合,将两组变量都映射到这个新空间中,并最大化它们的相关性。这个线性组合被称为典型变量(canonical variable)。在CCA中,每组变量都有组典型变量,典型变量对应着两组变量的最大相关性。 典型相关分析常用于以下领域: 1. 两组变量之间的关系分析:CCA可以用来寻找两组变量之间的关系,比如探究家庭收入与教育水平之间的关系,或者探究公司销售额与广告费用之间的关系等。 2. 数据降维:CCA可以用来将两组变量降维,将多维数据转换为低维数据,同时保留尽可能多的信息。 3. 数据分类:CCA可以用于分类问题,比如将两组变量分类为高相关性和低相关性等。 CCA的做法是:首先分别标准化两组变量,并求出它们的相关系数矩阵。然后用个特殊的正交化方法(万能公式)来得到典型变量。这个正交化方法确保每对典型变量都是相互独立的,并且每个典型变量是全局最优解,即在所有可能的线性组合中,与另组变量相关性最大。 最后,可以根据每对典型变量计算它们之间的相关性系数,得到它们之间的典型相关系数。这个值的大小表示两组变量之间的关系强度。 需要注意的是,CCA假设两组变量都是正态分布的,如果不是,则可能需要采取些转换。此外,由于CCA个线性方法,因此无法处理非线性关系,如果两组变量之间是非线性关系,可以考虑使用其他方法,比如核典型相关分析。 ### 回答3: Canonical Correlation AnalysisCCA)又称为典型相关分析,是种常用于分析两个数据集之间线性相关性的统计方法。该方法旨在找到两个不同数据集之间的最大相关性的线性组合。 CCA的目标是找到两个变量集之间的最大相关性,其中每个集合中的变量都是线性组合的。算法从两个变量集开始,分别叫做X和Y。CCA的任务是找到X和Y中的线性组合,称为X'和Y',使得它们之间的相关性最大。换句话说,CCA的目的是为了获得组新的变量,它们可以彼此关联,但是没有重复的信息。 CCA的数学模型表明,CCAs的计算量随数据集的数量呈平方增长,这意味着需要大量的计算资源来执行。另外,由于它是种线性方法,所以它不能处理非线性关系。 CCA在现实生活的应用中非常普遍,例如,它常用于分析不同的数据集之间的相关性,如分析营销数据和消费者行为数据之间的关联,或分析医学图像和生物学数据之间的关联。此外,CCA的主成分分析(PCA)版本也被广泛应用于许多现实生活的数据分析和建模任务,例如在模式识别和人脸识别等领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值