机器人走方格

题目

有一个 X×Y 的网格,一个机器人只能走格点且只能向右或向下走,要从左上角走到右下角。请设计一个算法,计算机器人有多少种走法。给定两个正整数x,y,请返回机器人的走法数目。

  • 测试输入:
    2 2
  • 测试输出:
    2

分析1

使用动态规划求解,定义 n[i,j] 为从起点 [0,0] 到点 [i,j] 的走法数目,则递归式为

n[i,j]={1,n[i1,j]+n[i,j1],i=0 or j=0i,j0

代码1

import java.util.Scanner;

public class Robot {
    static void solution(int[][] n, int x, int y) {
        for (int j = 0; j < y; j++) {
            n[0][j] = 1;
        }
        for (int i = 0; i < x; i++) {
            n[i][0] = 1;
        }
        for (int i = 1; i < x; i++) {
            for (int j = 1; j < y; j++) {
                n[i][j] = n[i - 1][j] + n[i][j - 1];
            }
        }
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int x = sc.nextInt();
        int y = sc.nextInt();
        int[][] n = new int[x][y];
        solution(n, x, y);
        System.out.println(n[x - 1][y - 1]);        
    }
}

变形

实际上机器人走过的水平和垂直网格数目是固定的 x+y2 ,可以先安排水平的走法有 x1 个,那么剩下的就安排给垂直走法,所以总的走法数目可以用组合计算为 Cx1x+y2 。但为什么还用动态规划计算呢?这个题目有灵活的变形。如果规定网格中的某些点机器人不能经过,那么动态规划就是一种通用的解法了。

给定两个正整数 x y,和 n 个机器人禁止经过的点的横纵坐标,请返回机器人的走法数目。

  • 测试输入:
    3 3
    1
    1 1
  • 测试输出:
    2

分析2

只需要将禁止点设置为不可行点,每次计算将其排除即可。递归式为

n[i,j]=1,,,n[i1,j],n[i,j1],n[i,j1]+[i1,j],i=0 or j=0[i,j][i,j1][i1,j][i,j1][i1,j][i,j1][i1,j]

代码2

import java.util.Scanner;

public class Robot {    
    static boolean isForbidden(int x, int y, int[] xforbid, int[] yforbid) {
        int length = xforbid.length;
        for (int i = 0; i < length; i++) {
            if (x == xforbid[i] && y == yforbid[i]) return true;
        }
        return false;
    }

    static void solution(int[][] n, int x, int y, int[] xforbid, int[] yforbid) {
        for (int j = 0; j < y; j++) {
            n[0][j] = 1;
        }
        for (int i = 0; i < x; i++) {
            n[i][0] = 1;
        }
        for (int i = 1; i < x; i++) {
            for (int j = 1; j < y; j++) {
                if (isForbidden(i, j, xforbid, yforbid)) 
                    n[i][j] = Integer.MIN_VALUE;
                else if (n[i - 1][j] == Integer.MIN_VALUE && 
                         n[i][j - 1] == Integer.MIN_VALUE) {
                    n[i][j] = Integer.MIN_VALUE;
                } else if (n[i - 1][j] != Integer.MIN_VALUE && 
                           n[i][j - 1] == Integer.MIN_VALUE) {
                    n[i][j] = n[i - 1][j];
                } else if (n[i - 1][j] == Integer.MIN_VALUE && 
                           n[i][j - 1] != Integer.MIN_VALUE) {
                    n[i][j] = n[i][j - 1];
                } else {
                    n[i][j] = n[i - 1][j] + n[i][j - 1];
                }
            }
        }
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int x = sc.nextInt();
        int y = sc.nextInt();
        int[][] n = new int[x][y];        
        int nforbid = sc.nextInt();
        int[] xforbid = new int[nforbid];
        int[] yforbid = new int[nforbid];
        for (int i = 0; i < nforbid; i++) {
            xforbid[i] = sc.nextInt();
            yforbid[i] = sc.nextInt();
        }
        solution(n, x, y, xforbid, yforbid);
        System.out.println(n[x - 1][y - 1]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值