重点:
(1)此处必须使用双向链表:因为要取出节点,放到末尾节点;
(2)head和tail作为两个标志节点一直存在,但没有赋值;
(3)精髓在于用双向链表来标识LRU的最长未被访问,达到O(1)的查询时间;
(4)双向链表删除和添加节点,两步和四步;
难度中等
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache
类:
LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
- 最多调用
2 * 105
次get
和put
解析:
需要双向链表+哈希表实现。哈希表存<int,LinkNode*>,双向链表用来判断访问次序,靠近头节点表明最近访问过的,靠近尾节点表明最久未被访问。分析如下:
对于get操作:首先通过哈希表判断键,是否在该LRU中,如果在,直接返回,并将对应的节点移到链表的head;如果没有对应的键则返回-1;
对于put操作:
——如果key不存在,则首先通过key和value创建新节点LinkNode,添加进哈希表,并且将该节点添加到链表头节点。再判断当前的节点数量size是否超过capcity,如果超过就删除链表尾节点,并删除哈希表中对应的项;
——如果key存在,则首先通过哈希表key定为节点位置,然后更新节点值,并且将该节点移至头节点;
struct LinkNode{
int val,key;
LinkNode *next,*pre;
LinkNode(): val(-1),key(-1),pre(nullptr),next(nullptr) {};
LinkNode(int x,int y): key(x),val(y),pre(nullptr),next(nullptr) {};
};
class LRUCache {
private:
int size;
int capacity;
unordered_map<int,LinkNode*> cache;
LinkNode *head,*tail;
public:
LRUCache(int _capacity) {
capacity=_capacity;
size=0;
head=new LinkNode();
tail=new LinkNode();
head->next=tail;
tail->pre=head;
}
int get(int key) {
if(!cache.count(key))
return -1;
LinkNode *tmp=cache[key];
MovetoHead(tmp);
return tmp->val;
}
void put(int key, int value) {
//如果该key已经存在
if(cache.count(key))//则修改值,并将节点移至链表尾
{
LinkNode *tmp=cache[key];
tmp->val=value;
MovetoHead(tmp);
}
else{
LinkNode *tmp=new LinkNode(key,value);
AddtoHead(tmp);
size++;
cache[key]=tmp;
//是否超出内存
if(size>capacity){
LinkNode *remove=RemoveTail();//删哈希表和链表
cache.erase(remove->key);
delete remove;//删除这个节点,释放空间
size--;
}
}
}
LinkNode* RemoveTail(){
LinkNode *node=tail->pre;
RemoveNode(node);
return node;
}
void RemoveNode(LinkNode *node){
node->pre->next=node->next;
node->next->pre=node->pre;
}
void MovetoHead(LinkNode *node){
RemoveNode(node);
AddtoHead(node);
}
void AddtoHead(LinkNode *node){
node->pre=head;
node->next=head->next;
head->next->pre=node;
head->next=node;
}
};