hadoop的思想就是把一个文件划分为N个block,然后把block散列到不同机器上。
因此block块的大小设定就非常重要了
大数据运算的结论:
1.分治思想
2.并行计算
3.计算向数据移动(减少传输IO消耗的时间 数据移动比分布式计算更耗时)
4.数据本地化读取
这四个条件将是整个大数据技术需要关心的重点
-
什么是HDFS?
HDFS( Hadoop Distributed File System)是一个分布式文件系统
-
什么是分布式文件系统呢?
简单说就是一个文件用N个block存储,单机情况就是一个文件存储在一台计算,而分布式文件系统就是把这N个block存储到不同的机器上
- 市上有很多分布式文件系统,为什么Hadoop还要自己开发HDFS?
- HDFS具有高度的容错性,可部署在低成本硬件上。非常适合高吞吐量、大型数据集的应用程序
- HDFS放宽了POSIX的一些要求,以支持对文件系统数据的流式访问
- 通常最好将计算迁移到数据所在的位置,而不是将数据移动到应用程序运行的位置
-
容错
故障检测和快速、自动地从中恢复是HDFS的核心架构目标
-
存储模型
- 文件线性按字节切割成块(block),具有offset,id
- 文件与文件的block大小可以不一样,一个文件=N个block
- 一个文件除最后一个block,其他block大小一致
- block的大小依据硬件的I/O特性调整(属于操作系统基本的优化)
- block被分散存放在集群的节点中,具有location
- Block具有副本(replication),没有主从概念,副本不建议在同一个节点
- 副本是满足可靠性和性能的关键
- 文件上传可指定block大小和副本数,上传后只能修改副本数
- 一次写入多次读取,不支持修改,但可以追加和截断
- 支持追加数据
-
架构设计
- HDFS是一个主从(Master/Slaves)架构
- 由一个NameNode和N个DataNode组成
- 面向文件包含:文件数据(data)和文件元数据(metadata)
- NameNode负责存储和管理文件元数据,并维护了一个层次型的文件目录树
- DataNode负责存储文件数据(block块),并提供block的读写
- DataNode与NameNode维持心跳,并汇报自己持有的block信息
- Client和NameNode交互文件元数据和DataNode交互文件block数据
-
数据复制
- 在任何时候都只有一个writer。
- NameNode做出关于块复制的所有决定。它周期性地从集群中的每个数据节点接收心跳和Blockreport。接收到心跳信号意味着数据节点工作正常。Blockreport包含数据节点上所有块的列表。
- NameNode角色功
1. 基于内存存储文件、目录结构,文件block的映射
2.需要持久化方案保证数据的可靠性
3. 提供副本放置策略
- DataNode角色功能
- 基于本地磁盘存储block(文件的形式)
- 保存block的校验和数据保证block的可靠性
- 与NameNode保持心跳,汇报block列表状态
-
元数据持久化
- 任何对文件系统元数据产生修改的操作,NameNode都会生成一个EditLog的事务进行记录下来
- 使用FsImage存储所有元数据的状态
- 使用本地磁盘保存EditLog和FsImage
- EditLog具有完整性,数据丢失少,但恢复速度慢,并且膨胀风险(日志文件太大)
- FsImage具有恢复速度快,提及与内存数据相当,但不能实时保存,数据丢失多
- NameNode使用了FsImage+EditLog整合方案:
滚动将增量的EditLog更新到FsImage,以保证更近时点的FsImage和更小的EditLog体积
Ps
- EditsLog:恢复日志,可用于恢复数据
- FsImage:镜像,可用于快照恢复数据
- HDFS采用FsImage+增量的EditLog进行记录避免数据丢失
-
安全模式
- HDFS搭建时会格式化,格式化操作会产生一个空的FsImage
- 当NameNode启动时,它从磁盘中读取EditLog和FsImage
- 将所有EditLog中的事务作用在内存中的FsImage上
- 并且将新版本的FsImage从内存中保存在磁盘上
- 删除旧的EditLog,因为这个旧的EditLog的事务已经作用在了FsImage上了
- NameNode启动后会进行一个称为安全模式的特殊状态
- 处于安全模式的NameNode是不会进行数据块的复制的
- NameNode从所有的DataNode接收心跳信号和状态报告
- 每当NameNode检测确认某个数据块的副本数目达到这个最小值,那么该数据库会被认为是副本安全(safely replicated)的
- 在一定百分比的数据被NameNode检测确认是安全之后,NameNode将会退出安全模式状态
- 接下来它会确定还有哪些数据库的副本没有达到指定数目,并将数据块复制到DataNode上
-
HDFS中的SNN即SecondaryNameNode(SNN)—真实企业不采用此方案
- 在非Ha模式下,SNN一般是独立的节点,周期完成对NN的EditLog向FsImage合并,减少EditLog大小,减少NN启动时间
- 根据配置文件设置的时间间隔fs.checkpoint.period默认3600秒
- 根据配置文件设置edits log大小fs.checkpoint.size规定edits文件的最大值默认是64MB
版本1.x无Ha模式,2.x开始有Ha模式,Ha模式下2个NameNode,NameNode的个数与版本没有任何关系。
-
常用服务器种类和选型
- 塔式服务器(Tower servers )
一般用于研发的测试环境
- 机架服务器(Rack server )
中小企和研发测试环境
- 刀片服务器(blade Server)
关于服务器选择,PC一般选择塔式服务器。机架服务器一般用于公司,公司中使用多台机架服务器进行叠加,使用交换机来进行交换讯息。刀片服务器最贵,用于大型企业或者特殊服务
-
副本放置策略(NameNode)
- 第一个副本:放置在上传文件的DN(不然还要做数据移动,浪费时间);如果是集群外提交,则随机挑选一台磁盘不太满,CPU不太忙的节点
- 第二个副本:放在于第一个副本不同的机架的节点
- 第三个副本:与第二个副本相同机架的节点
- 更多副本:随机节点
为什么?
因为可能只有2个副本,这样对吧原先第1、2副本放在一台上,这样此台机器挂了就彻底挂了。
-
HDFS的读写流程(使用副本策略)
HDFS的写流程
- Client和NN连接创建文件元数据
- NN判定元数据是否有效
- NN触发副本放置策略,返回一个有序的DN列表
- Client和DN简历Pipeline连接
- Client将块分成packet(64KB),并使用chunk(512B)+ chucksum(4B)填充
- Client将packet发送队列dataqueue中,并向第一个DN发送
- 第一个DN收到packet后本地保存发送给第二个DN
- 第二个DN收到packet后本地保存并发给第三个DN
- 这个过程中,上游节点同时发送下一个packet
- 类似工厂流水线,结论:流式其实也是变种的并行计算
- HDFS使用这种传输方式,副本数对于Client是透明的
- 当block传输完成,DN分别向各自的NN汇报(此图没有体现出来),同时Client继续传输下一个blcok
- 所以client传输和block汇报也是并行的
HDFS读流程
- 为了降低整体的带宽消耗和读延迟,HDFS会尽量让读取程序读取离他最近的副本(本机à本机架à其他最近的)
- 如果再读取程序的同一个机架上有一个副本,那么就读该副本
- 如果一个HDFS集群跨越多个数据中心,那么客户端也将首先读本地数据中心的副本
- 语义:下载一个文件
- Client和NN交互文件元数据获取所有的fileBlockLocation
- NN按距离策略排序返回
- Client尝试下载Block并且校验数据完整性(校验盒校验)
- 语义:下载一个文件其实是获取文件的所有的Block元数据,那么子集获取block应该成立
- Hdfs支持Client输出文件的offset自定义连接哪些Block的DN,自定义获取数据
- 这个是支持计算层的分治,并行计算的核心(牢记)