1、线性模型
针对于线性可分的情况:
最好的划分线为使得 距离 d 最大的直线,其中被该直线插到的向量叫 支持向量。
定义:
①训练数据及标签 其中,, 标签 为 1或 -1。
②线性模型: (超平面),其中,, b为常数
③一个训练集线性可分是指:, 使:对于 , 有:
若 = 1. 则 ; 若 = -1,则
综合起来就是, (公式1)
事实:
支持向量机
优化问题(凸优化问题,二次规划问题)
2、非线性模型
核函数:
3、优化理论
ROC 曲线:
针对于线性可分的情况:
最好的划分线为使得 距离 d 最大的直线,其中被该直线插到的向量叫 支持向量。
定义:
①训练数据及标签 其中,, 标签 为 1或 -1。
②线性模型: (超平面),其中,, b为常数
③一个训练集线性可分是指:, 使:对于 , 有:
若 = 1. 则 ; 若 = -1,则
综合起来就是, (公式1)
事实:
优化问题(凸优化问题,二次规划问题)
2、非线性模型
核函数:
3、优化理论
ROC 曲线: