快速幂 + 逆元

##逆元
乘法逆元:
有 a * x = 1 (mod c) 称 x 为 a 与 c 的乘法逆元。

理论依据:(mod 对于加减乘除都可进行分配)
f / a mod c= ? (f mod c / a mod c = ?)
如果存在 ax = 1(mod c)
那么两边同时乘起来,得到 f
x = ?(mod c)

成立条件:
1 模方程 a*x= 1(mod c)存在解
2 a | f (f%a==0)

注 : 若a*x=1 (mod c) 则称 a 关于模 c 的乘法逆元为 x.当 a 与c 互素时 , x 有唯一解。如果不互素则无解。如果 c 为素数,则从1 到 c-1 的任意数都与 c 互素, 即在 1 到c-1之间都恰好有一个关于模 c 的逆元。

##快速幂
& 表示在二进制中取位

typedef long long ll;
ll mul(ll n,ll s)
{
   ll res=1;
   while(n)  // 也可以用>>移位符号  for(; n>0; n>>=1)
   {                  //         {
     if(n%2)              //           if(n%2==1)
       res=res*s;     //              res=res*s;
     s=s*s;          //            s=s*s;
     n/=2;          //           }
   }                
   return res       
}

##例题
3的幂的和
求:3^0 + 3^1 +…+ 3^(N) mod 1000000007
Input
输入一个数N(0 <= N <= 10^9)
Output
输出:计算结果
Sample Input
3
Sample Output
40

分析:
30+31+32+…+3n=(3^(n+1)-1) / 2
f / 2 mod c = f * x mod c
2 * x =1(mod c)
x = (c+1)/2

#include<iostream>
using namespace std;
#define mod 1000000007
long long mul(long long a,long long n)
{
    long long ret=1;
    while(n)
    {
     if(n&1)
          ret=ret*a%mod;
     a=a*a%mod;
     n/=2;
    }
    //cout<<ret<<endl;
    return ret;
}

int main()
{
    long long n;
    cin>>n;
    long long ans;
    ans=(mul(3,n+1)-1)*((mod+1)/2)%mod;

    cout<<ans<<endl;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值