扩展欧几里得算法

形如ax+by=c(a,b均不为0)的方程,a,b,c都是整数,求(x,y)的整数解。

1 判断是否有解
有解的充要条件是,c 可以被gcd(a,b)整除。

推算过程:
令c=kgcd(a,b)
有gcd(a,b)=gcd(b,a%b)
则ax+by=c=k
gcd(a,b)
ax1+by1=gcd(a,b)=gcd(b,a%b)=bx1+(a%b)y1
a%b=a-(a/b)*b
bx1+ay1-(a/b)by1
ay1+b(x1-(a/b)*y1)=ax+by

x=y1,y=x1-(a/b)*y1;

2 扩展欧几里德求特解

欧几里德给出了计算ax+by=gcd(a,b)的解法

long long exgcd(long long a,long long b,long long &x,long long &y)
{
    if (b==0) { x=1,y=0; return a; }
    long long d=exgcd(b,a%b,x,y);
    long long tmp=x;
    x=y;
    y=tmp-a/b*y;
    return d;
}

3 通解

ax+by=gcd(a,b)在有解并求出特解(x,y)的情况下,通解可以表示为

  x'=x+b/gcd(a,b)*t;
  y'=y-a/gcd(a,b)*t;

对于一般式ax+by=c,如果有解,只需把ax+by=gcd(a,b)的特解乘上c/gcd(a,b)即可得到其特解,通解还是一样的公式。

4 例子

求出特解和一个通解

int main(int argc, char* argv[])
{
    long long a,b,c;
    scanf("%lld%lld%lld",&a,&b,&c);
    long long x,y,d;
    d=exgcd(a,b,x,y);
    if (c%d!=0) printf("No solution!\n");
    else
    {
        a/=d,b/=d,c/=d;
        x*=c,y*=c;
        printf("特解: %lld %lld\n",x,y);
        printf("一个通解: %lld %lld\n",x+b,y-a);
    }
    return 0;
}

下面两个程序,找的解满足x或y是第一个非负整数的解。

void minimal_x(long long &x,long long &y,long long &a,long long &b,long long &c)
{
    long long m=(b>0 ? b : -b);
    x%=m;
    if (x<0) x+=m;
    y=(c-a*x)/b;
}
void minimal_y(long long &x,long long &y,long long &a,long long &b,long long &c)
{
    long long m=(a>0 ? a : -a);
    y%=m;
    if (y<0) y+=m;
    x=(c-b*y)/a;
}

##例题
###1>青蛙约会
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4

分析:
青蛙A与青蛙B最终相遇:假设A和B都跳了 t 步,他们相遇的充分必要条件为
mt+x-(nt+y) = p*L (p为整数)
整理得:(n-m)t + Lp = x-y;
在这里我们调用拓展欧几里得定理,我们要注意到在exgcd中得到的t,p是exgcd中的一个合理解,而并不是最优解, 所以我们要进行最后一步操作。

#include<iostream>
#include<cstdio>
using namespace std;

long long exgcd(long long a,long long b,long long &x,long long &y)//拓展欧几里得定理
{
  if(b==0){x=1;y=0;return a;}
  long long d=exgcd(b,a%b,x,y);
  long long tmp=x;
  x=y;
  y=tmp-(a/b)*y;
  return d;
}

int main()
{
    long long x,y,m,n,l,i;
    scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
    long long t,p;
    long long d=exgcd(n-m,l,t,p);
    if((x-y)%d || (m==n))
    {
        printf("Impossible\n");
    }
    else
    {
        l=l/d;
        t*=((x-y)/d);
        t=(t%l+l)%l;
        printf("%lld\n",t);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值