A组
1.方程整数解
方程: a^2 + b^2 + c^2 = 1000
这个方程有整数解吗?有:a,b,c=6,8,30 就是一组解。
你能算出另一组合适的解吗?
请填写该解中最小的数字。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
#include<iostream>
using namespace std;
int pow(int a,int b,int c)
{
return a*a+b*b+c*c;
}
int main()
{
int n=sqrt(1000);
for(int i=1; i<n; i++)
for(int j=i; j<n; j++)
for(int k=j; k<n; k++)
if(pow(i,j,k)==1000)
cout<<i<<" "<<j<<" "<<k<<endl;
return 0;
}
2.星系炸弹
在X星系的广袤空间中漂浮着许多X星人造“炸弹”,用来作为宇宙中的路标。
每个炸弹都可以设定多少天之后爆炸。
比如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在2015年1月16日爆炸。
有一个贝塔炸弹,2014年11月9日放置,定时为1000天,请你计算它爆炸的准确日期。
请填写该日期,格式为 yyyy-mm-dd 即4位年份2位月份2位日期。比如:2015-02-19
请严格按照格式书写。不能出现其它文字或符号。
#include<iostream>
using namespace std;
int flag=0;
int Theday(int month)
{
switch(month)
{
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:
return 31;
break;
case 4:
case 6:
case 9:
case 11:
return 30;
break;
case 2:
{
if(flag) return 29;
return 28;
break;
}
default:
break;
}
}
void check(int year)
{
if((year%400==0) || (year%4==0 && year%100!=0))
{
flag=1;
}
else
{
flag=0;
}
}
int main()
{
int year=2014,month=11,day=9;
int n=1000;
check(year);
for(int i=1; i<=n; i++)
{
day++;
if(day>Theday(month))
{
day=1;
month++;
if(month>12)
{
year++;
check(year);
month=1;
}
}
}
cout<<year<<'\t'<<month<<'\t'<<day<<endl;
}
3.奇妙的数字
小明发现了一个奇妙的数字。它的平方和立方正好把0~9的10个数字每个用且只用了一次。
你能猜出这个数字是多少吗?
请填写该数字,不要填写任何多余的内容。
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
int visit[10];
int check(int i)
{
memset(visit,0,sizeof(visit));
int m,n;
m=i*i;
n=m*i;
while(m)
{
int tmp=m%10;
m/=10;
visit[tmp]++;
}
while(n)
{
int tmp=n%10;
n/=10;
visit[tmp]++;
}
for(int j=0; j<10; j++)
{
if(visit[j]!=1)
return 0;
}
return 1;
}
int main()
{
for( int i=1;; i<100; i++)
{
if(check(i))
cout<<i<<endl;
}
return 0;
}
4.格子中输出
StringInGrid函数会在一个指定大小的格子中打印指定的字符串。
要求字符串在水平、垂直两个方向上都居中。
如果字符串太长,就截断。
如果不能恰好居中,可以稍稍偏左或者偏上一点。
下面的程序实现这个逻辑,请填写划线部分缺少的代码。
#include <stdio.h>
#include <string.h>
void StringInGrid(int width, int height, const char* s)
{
int i,k;
char buf[1000];
strcpy(buf, s);
if(strlen(s)>width-2) buf[width-2]=0;
printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");
for(k=1; k<(height-1)/2;k++){
printf("|");
for(i=0;i<width-2;i++) printf(" ");
printf("|\n");
}
printf("|");
printf("%*s%s%*s",_____________________________________________); //填空
printf("|\n");
for(k=(height-1)/2+1; k<height-1; k++){
printf("|");
for(i=0;i<width-2;i++) printf(" ");
printf("|\n");
}
printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");
}
int main()
{
StringInGrid(20,6,"abcd1234");
return 0;
}
对于题目中数据,应该输出:
+------------------+
| |
| abcd1234 |
| |
| |
+------------------+
(如果出现对齐问题,参看【图1.jpg】)
注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。
(width-strlen(s)-2)/2," ",s,(width-strlen(s)-2)/2," "
printf中格式化的写法有个生僻的用法,%*s 时,先提供一个动态的宽度值。再提供串的值。
5.九数组分数
1,2,3...9 这九个数字组成一个分数,其值恰好为1/3,如何组法?
下面的程序实现了该功能,请填写划线部分缺失的代码。
#include <stdio.h>
void test(int x[])
{
int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
if(a*3==b) printf("%d / %d\n", a, b);
}
void f(int x[], int k)
{
int i,t;
if(k>=9){
test(x);
return;
}
for(i=k; i<9; i++){
{t=x[k]; x[k]=x[i]; x[i]=t;}
f(x,k+1);
_____________________________________________ // 填空处 t=x[k]; x[k]=x[i]; x[i]=t;
}
}
int main()
{
int x[] = {1,2,3,4,5,6,7,8,9};
f(x,0);
return 0;
}
6、牌型种数
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字
#include<iostream>
using namespace std;
int num=0,answer=0;
int dfs(int n)
{
if(num>13) return 0;
if(n==14)
{
if(num==13)
{
answer++;
return 0;
}
}
else
{
for(int i=0; i<=4; i++)
{
num+=i;
dfs(n+1);
num-=i;//还原
}
}
}
int main()
{
dfs(1);
cout<<answer<<endl;
return 0;
}
7.手链样式
小明有3颗红珊瑚,4颗白珊瑚,5颗黄玛瑙。
他想用它们串成一圈作为手链,送给女朋友。现在小明想知道:如果考虑手链可以随意转动或翻转,一共可以有多少不同的组合样式呢?
注:这道题的思路是如果把所有的玛瑙看做不同的话应该用(3+4+5)!种,再除掉重复的需要除以3!4!5!(想想为啥)。
在考虑到环形,可以先固定第一颗,
答案是(3+4+5-1)!/(2!+4!+5!)+(3+4+5-1)!/(3!+3!+5!)+(3+4+5-1)!/(3!+4!+4!)
#include<iostream>
#include<stdio.h>
using namespace std;
int Mul(int i)
{
int answer=1;
for(int j=1; j<=i; j++)
answer*=j;
return answer;
}
int main()
{
int Fz=Mul(3+4+5-1);
int a=Mul(2)*Mul(4)*Mul(5);
int b=Mul(3)*Mul(3)*Mul(5);
int c=Mul(3)*Mul(4)*Mul(4);
printf("%d\n",Fz/a+Fz/b+Fz/c);
return 0;
}
8.饮料换购
请你计算一下,如果小明不浪费瓶盖,尽量地参加活动,那么,对于他初始买入的n瓶饮料,最后他一共能喝到多少瓶饮料。
输入:一个整数n,表示开始购买的饮料数量(0<n<10000)
输出:一个整数,表示实际得到的饮料数
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int answer=n;
while(n>2)
{
answer=answer+n/3;
n=n/3+n%3;
}
cout<<answer<<endl;
}
9.垒骰子
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 2000ms
注:采用动态规划 转移方程为: dp[i][j]+= dp[i-1][1.....n], 将上一层的所有情况相加(转载)
#include <iostream>
using namespace std;
// ...冲突记录: Compact[i][j]=false代表点数为i的面与点数为j的面存在冲突
bool Compact[7][7];
// ...Parner[i]=j代表 点数为i的面 的对立面点数为j
const int Parner[7]={ 0,4,5,6,1,2,3 };
const long long MOD = 1000000007;
int main(int argc, char** argv)
{
long long N; // 骰子高度
int M; // 冲突组数
int s1,s2;
cin >> N >> M;
for( int i = 0; i < 7; ++i)
for( int j = 0; j < 7;++j)
Compact[i][j]=true;
for( int i = 0; i < M; ++i ) {
cin >> s1 >> s2;
// ...点数为s1的面与点数为s2的面存在冲突
Compact[s1][s2] = Compact[s2][s1] = false;
}
long long dp[2][7]; // 滚动数组
long long C = 4;
int e = 0; // 滚动标志
for( int i = 1; i < 7; ++i )
dp[e][i] = 1;
// dp[i][j]代表高度为i的,顶面点数为j的叠骰子方案数
// 在这里忽略每个骰子可以四面转向的情况, 把该情况留到最后乘上去就可以了
int j,k;
for( long long i = 2; i <= N; ++i ){
e = 1-e; // ...滚动处理
C = (C*4)%MOD;
for( j = 1; j < 7; ++j ){
dp[e][j] = 0;
for( k = 1; k < 7; ++k)
if( Compact[ Parner[j] ][k] )
dp[e][j] += dp[1-e][k];
dp[e][j]%=MOD;
}
}
int sum=0;
for( int i = 1; i < 7; ++i)
sum = (sum+dp[e][i])%MOD;
sum = (sum*C)%MOD;
cout << sum;
return 0;
10、灾后重建
Pear市一共有N(<=50000)个居民点,居民点之间有M(<=200000)条双向道路相连。这些居民点两两之间都可以通过双向道路到达。这种情况一直持续到最近,一次严重的地震毁坏了全部M条道路。
震后,Pear打算修复其中一些道路,修理第i条道路需要Pi的时间。不过,Pear并不打算让全部的点连通,而是选择一些标号特殊的点让他们连通。
Pear有Q(<=50000)次询问,每次询问,他会选择所有编号在[l,r]之间,并且 编号 mod K = C 的点,修理一些路使得它们连通。由于所有道路的修理可以同时开工,所以完成修理的时间取决于花费时间最长的一条路,即涉及到的道路中Pi的最大值。
你能帮助Pear计算出每次询问时需要花费的最少时间么?这里询问是独立的,也就是上一个询问里的修理计划并没有付诸行动。
【输入格式】
第一行三个正整数N、M、Q,含义如题面所述。
接下来M行,每行三个正整数Xi、Yi、Pi,表示一条连接Xi和Yi的双向道路,修复需要Pi的时间。可能有自环,可能有重边。1<=Pi<=1000000。
接下来Q行,每行四个正整数Li、Ri、Ki、Ci,表示这次询问的点是[Li,Ri]区间中所有编号Mod Ki=Ci的点。保证参与询问的点至少有两个。
【输出格式】
输出Q行,每行一个正整数表示对应询问的答案。
【样例输入】
7 10 4
1 3 10
2 6 9
4 1 5
3 7 4
3 6 9
1 5 8
2 7 4
3 2 10
1 7 6
7 6 9
1 7 1 0
1 7 3 1
2 5 1 0
3 7 2 1
【样例输出】
9
6
8
8
【数据范围】
对于20%的数据,N,M,Q<=30
对于40%的数据,N,M,Q<=2000
对于100%的数据,N<=50000,M<=2*10^5,Q<=50000. Pi<=10^6. Li,Ri,Ki均在[1,N]范围内,Ci在[0,对应询问的Ki)范围内。
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 5000ms
注:没看懂,未知。(转载)
B组
1.奖券数目
有些人很迷信数字,比如带“4”的数字,认为和“死”谐音,就觉得不吉利。
虽然这些说法纯属无稽之谈,但有时还要迎合大众的需求。某抽奖活动的奖券号码是5位数(10000-99999),要求其中不要出现带“4”的号码,主办单位请你计算一下,如果任何两张奖券不重号,最多可发出奖券多少张。
请提交该数字(一个整数),不要写任何多余的内容或说明性文字。
#include<iostream>
using namespace std;
int check(int i)
{
while(i)
{
int r=i%10;
if(r==4) return 0;
i/=10;
}
return 1;
}
int main()
{
int ans=0;
for(int i=10000; i<100000; i++)
if(check(i)) ans++;
cout<<ans<<endl;
}
3.三羊献瑞
观察下面的加法算式:
祥 瑞 生 辉
+ 三 羊 献 瑞
-------------------
三 羊 生 瑞 气
(如果有对齐问题,可以参看【图1.jpg】)
其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。
#include <stdio.h>
int judge(int num1,int num2,int num3,int num4,int num5, int num6,int num7, int num8)
{
int i,j;
int array[8];
array[0]=num1; array[1]=num2; array[2]=num3;
array[3]=num4; array[4]=num5; array[5]=num6;
array[6]=num7; array[7]=num8;
for(i=0;i<8;i++)
{
for(j=i+1;j<8;j++)
{
if(array[j]==array[i])
return 0;
}
}
return 1;
}
int main()
{
int x,r,s,h,san,y,xian,q;
int number1, number2,number3;
for(x=1;x<10;x++)
{
for(r=0;r<10;r++)
{
for(s=0;s<10;s++)
{
for(h=0;h<10;h++)
{
for(san=1;san<10;san++)
{
for(y=0;y<10;y++)
{
for(xian=0;xian<10;xian++)
{
for(q=0;q<10;q++)
{
number1=x*1000+r*100+s*10+h;
number2=san*1000+y*100+xian*10+r;
number3=san*10000+y*1000+s*100+r*10+q;
if(number1+number2==number3 && judge(x,r,s,h,san,y,xian,q))
printf("%d+%d=%d\n",number1,number2,number3);
}
}
}
}
}
}
}
}
getchar();
return 0;
}
6.加法变乘法
我们都知道:1+2+3+ ... + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+...+10*11+12+...+27*28+29+...+49 = 2015
就是符合要求的答案。
请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
注意:需要你提交的是一个整数,不要填写任何多余的内容。
#include<stdio.h>
int main()
{
for(int i=1; i<50; i++)
{
for(int j=i+2; j<50; j++)
{
int a=i*(i+1)-(i+i+1);
int b=j*(j+1)-(j+j+1);
if(a+b==2015-1225)
printf("%d\n",i);
}
}
return 0;
}
8.移动距离
X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3...
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为6时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 .....
我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)
输入为3个整数w m n,空格分开,都在1到10000范围内
w为排号宽度,m,n为待计算的楼号。
要求输出一个整数,表示m n 两楼间最短移动距离。
例如:
用户输入:
6 8 2
则,程序应该输出:
4
再例如:
用户输入:
4 7 20
则,程序应该输出:
5
#include<iostream>
using namespace std;
int sx,sy,ex,ey;
void make(int a,int b)
{
if(a%n==0)
{
int r=a/n;
if(r%2)
sx=r,sy=n;
else
sx=r,sy=1;
}
else
{
int r=a/n;
if(r%2)
sx=r+1,sy=n-a%n+1;
else
sx=r+1,sy=a%n;
}
if(b%n==0)
{
int r=b/n;
if(r%2)
ex=r,ey=n;
else
ex=r,ey=1;
}
else
{
int r=b/n;
if(r%2)
ex=r+1,ey=n-a%n+1;
else
ex=r+1,ey=a%n;
}
}
int main()
{
int n,i,j;
cin>>n>>i>>j;
make(i,j);
int ans=abs(sx-ex)+abs(sy-ey);
cout<<ans<<endl;
return 0;
}
10.生命之树
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, ..., vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。
「输入格式」
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。
「输出格式」
输出一行一个数,表示上帝给这棵树的分数。
「样例输入」
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5
「样例输出」
8
「数据范围」
对于 30% 的数据,n <= 10
对于 100% 的数据,0 < n <= 10^5, 每个节点的评分的绝对值不超过 10^6 。
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
C组
1.隔行变色Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的样式。
小明设计的样式为:第1行蓝色,第2行白色,第3行蓝色,第4行白色,....
现在小明想知道,从第21行到第50行一共包含了多少个蓝色的行。
请你直接提交这个整数,千万不要填写任何多余的内容。
#include<iostream>
using namespace std;
int main()
{
int ans=0;
for(int i=21; i<=50; i++)
if(i%2) ans++;
cout<<ans<endl;
return 0;
}
2.立方尾不变
有些数字的立方的末尾正好是该数字本身。
比如:1,4,5,6,9,24,25,....
请你计算一下,在10000以内的数字中(指该数字,并非它立方后的数值),符合这个特征的正整数一共有多少个。
请提交该整数,不要填写任何多余的内容。
#include<iostream>
using namespace std;
int pow(int n)
{
int m=1;
for(int i=0; i<n; i++)
m*=10;
// cout<<m<<endl;
return m;
}
int check(int i)
{
int n=i*i*i-i;
int num=0;
while(i)
{
i/=10;
num++;
}
//cout<<n<<endl;
int m=pow(num);
if(n%m==0)
return 1;
else
return 0;
}
int main()
{
int ans=0;
for(int i=1; i<10000; i++)
if(check(i))
{
cout<<i<<" ";
ans++;
}
cout<<endl<<ans<<endl;
return 0;
}
5.串逐位和
给定一个由数字组成的字符串,我们希望得到它的各个数位的和。
比如:“368” 的诸位和是:17
这本来很容易,但为了充分发挥计算机多核的优势,小明设计了如下的方案:
int f(char s[], int begin, int end)
{
int mid;
if(end-begin==1) return s[begin] - '0';
mid = (end+begin) / 2;
return ____________________________________; //填空
}
int main()
{
char s[] = "4725873285783245723";
printf("%d\n",f(s,0,strlen(s)));
return 0;
}
你能读懂他的思路吗? 请填写划线部分缺失的代码。
注意:只填写缺少的部分,不要填写已有代码或任何多余内容。
f(s,begin,mid)+f(s,mid,end)
9.打印大X
小明希望用星号拼凑,打印出一个大X,他要求能够控制笔画的宽度和整个字的高度。
为了便于比对空格,所有的空白位置都以句点符来代替。
要求输入两个整数m n,表示笔的宽度,X的高度。用空格分开(0<m<n, 3<n<1000, 保证n是奇数)
要求输出一个大X
例如,用户输入:
3 9
程序应该输出:
***.....***
.***...***.
..***.***..
...*****...
....***....
...*****...
..***.***..
.***...***.
***.....***
(如有对齐问题,参看【图1.jpg】)
再例如,用户输入:
4 21
程序应该输出
****................****
.****..............****.
..****............****..
...****..........****...
....****........****....
.....****......****.....
......****....****......
.......****..****.......
........********........
.........******.........
..........****..........
.........******.........
........********........
.......****..****.......
......****....****......
.....****......****.....
....****........****....
...****..........****...
..****............****..
.****..............****.
****................****
(如有对齐问题,参看【图2.jpg】)
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
#include<iostream>
using namespace std;
int main()
{
int m,n;
cin>>m>>n;
int r=m+n-1;
for(int i=0; i<n; i++)
{
if(i<n/2)
{
if(r-2*i<=2*m)
{
for(int j=0; j<i; j++)
cout<<".";
for(int j=0; j<r-2*i; j++)
cout<<"*";
for(int j=0; j<i; j++)
cout<<".";
cout<<endl;
}
else
{
for(int j=0; j<i; j++)
cout<<".";
for(int j=0; j<m; j++)
cout<<"*";
for(int j=0; j<r-2*m-2*i; j++)
cout<<".";
for(int j=0; j<m; j++)
cout<<"*";
for(int j=0; j<i; j++)
cout<<".";
cout<<endl;
}
}
else if(i==n/2)
{
for(int j=0; j<i; j++)
cout<<".";
for(int j=0; j<m; j++)
cout<<"*";
for(int j=0; j<i; j++)
cout<<".";
cout<<endl;
}
else
{
int tmp=n-i-1;
if(r-2*tmp<=2*m)
{
for(int j=0; j<tmp; j++)
cout<<".";
for(int j=0; j<r-2*tmp; j++)
cout<<"*";
for(int j=0; j<tmp; j++)
cout<<".";
cout<<endl;
}
else
{
for(int j=0; j<tmp; j++)
cout<<".";
for(int j=0; j<m; j++)
cout<<"*";
for(int j=0; j<r-2*m-2*tmp; j++)
cout<<".";
for(int j=0; j<m; j++)
cout<<"*";
for(int j=0; j<tmp; j++)
cout<<".";
cout<<endl;
}
}
}
}