用高斯消元法解异或方程组

异或方程组就是形如这个样子的方程组:

M[0][0]x[0]^M[0][1]x[1]^…^M[0][N-1]x[N-1]=B[0]
M[1][0]x[0]^M[1][1]x[1]^…^M[1][N-1]x[N-1]=B[1]

M[N-1][0]x[0]^M[N-1][1]x[1]^…^M[N-1][N-1]x[N-1]=B[N-1]

其中“^”表示异或(XOR, exclusive or),M[i][j]表示第i个式子中x[j]的系数,是1或者0。B[i]是第i个方程右端的常数,是1或者0。

解这种方程可以套用高斯消元法,只须将原来的加减操作替换成异或操作就可以了,两个方程的左边异或之后,它们的公共项就没有了。

具体的操作方法是这样的:对于k=0..N-1,找到一个M[i][k]不为0的行i,把它与第k行交换,用第k行去异或下面所有M[i][j]不为0的行i,消去它们的第k个系数,这样就将原矩阵化成了上三角矩阵;最后一行只有一个未知数,这个未知数就已经求出来了,用它跟上面所有含有这个未知数的方程异或,就小觑了所有的着个未知数,此时倒数第二行也只有一个未知数,它就被求出来了,用这样的方法可以自下而上求出所有未知数。

有一个5*6的灯泡构成的矩阵,灯的开关规则是这样:当改变某盏灯的,状态时,这盏灯的上下左右相邻的灯的状态也随之改变。例如:  
  0   1   1   0   1   0  
  1   0   0   1   1   1  
  0   0   1   0   0   1  
  1   0   0   1   0   1  
  0   1   1   1   0   0  
   
  当按下2行3列的开关时,状态变为:  
  0   1   0   0   1   0  
  1   1   1   0   1   1  
  0   0   0   0   0   1  
  1   0   0   1   0   1  
  0   1   1   1   0   0  
   
  游戏的目的是对于任意给定的亮灭初始态,通过一系列动作关闭所有的灯。  
  可以注意到的是:  
  1.矩阵的状态与按开关的顺序无关  
  2.如果某个开关按下了两次,那么就相当于取消了第一次的操作,也就是说没有开关需要按超过1次  
   
  现在问题是:对于给定的初始状态,求出需要按哪些开关来完成游戏  
   
  原题在这里  
  http://acm.pku.edu.cn/JudgeOnline/showproblem?problem_id=1222  

 把上面的矩阵看成一个m*n的向量X=(x1,x2,...,x(m*n))  
  对于位置k上的开关,它将变化最多5个位置的开关,对应一个向量  
          C(k)=(0,0,...,1,0,....,1,...,0)  
  其中开关状态改变的位置为1,开关状态不改变的位置为0  
  对于初始向量X=(x1,x2,...,x(m*n)),使用了开关C(k)后,状态会变成  
  X+C(k)   (mod   2)  
   
  所以对初始向量X,我们需要选择一系列的k1,k2,...,ks使得  
  X+C(k1)+C(k2)+....+C(ks)   (mod   2)=O=(0,0,0,...,0)  
  我们可以同样构造一个0,1向量Y,使得,如果位置k出现在k1,k2,...ks中,那么Y  
  在位置k的值是1,不然是0,这样,我们就可以将上面公式写成矩阵形式  
  X+Y*C   (mod   2)=O  
  其中C=(C(1)'   C(2)'     ....   C(m*n)')'  
  也就是C是由这m*n个行向量构成的矩阵,第k行就是向量C(k)  
  最二阶域上,加和减是相同的,也就是上面的方程等价于  
  Y*C   (mod   2)=X  
  其中C,X已知,求Y.  
  由于(mod   2)运算是一个域   (关于乘除加减封闭,加减是mod   2加减,还满足结合率,交换率)  
  所以我们可以直接在二阶域上用高斯消元法求解(注意加减是mod   2的,对应计算机上的异或运算)  
  其中,如果C可逆,解是唯一的,如果C不可逆,解可能不存在,也可能不唯一。  

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Gröbner基的特殊高斯消元算法通过特殊的高斯消元法来计算Gröbner基。这种算法可以处理规模很大的问题,因为它使用了一些技巧来减少计算量。 算法步骤: 1. 对于给定的理想$I$,构造一个包含$I$的理想$J$,使得$J$的Gröbner基可以用特殊高斯消元法计算出来。这个步骤通常使用Buchberger算法来完成。 2. 对于$J$的Gröbner基$G$的每个元素$g_i$,计算一个消元子$f_i$,使得$f_i$是$g_i$中的最高项。 3. 对于每对消元子$f_i$和$f_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$f_j$。 4. 对于每个消元子$f_i$,计算一个被消元子$h_i$,使得$h_i$是$I$中所有多项式中不包含$f_i$的最高项。 5. 对于每对消元子$f_i$和被消元子$h_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$h_j$。 6. 重复步骤4和5,直到没有可约的消元子和被消元子。 7. 对于每个消元子$f_i$和被消元子$h_i$,计算它们的最小公倍式$u_i$。 8. 返回$u_1,\dots,u_m$,它们组成了$I$的Gröbner基。 C代码实现: 以下是一个简单的C代码实现,用于计算给定多项式的Gröbner基。这个代码只是一个示例,可能需要进行修改才能处理更复杂的问题。 ```c #include <stdio.h> #include <stdlib.h> typedef struct { int deg; // 多项式的次数 int *coeffs; // 多项式的系数 } poly_t; // 计算两个多项式的最小公倍式 poly_t *lcm(poly_t *f, poly_t *g) { // TODO: 实现计算最小公倍式的代码 } // 计算多项式的消元子 poly_t *lead_term(poly_t *f) { poly_t *lt = (poly_t *) malloc(sizeof(poly_t)); lt->deg = f->deg; lt->coeffs = (int *) calloc(lt->deg + 1, sizeof(int)); lt->coeffs[lt->deg] = 1; return lt; } // 计算多项式的被消元子 poly_t *elim_term(poly_t *f, poly_t **polys, int n) { poly_t *et = (poly_t *) malloc(sizeof(poly_t)); et->deg = 0; et->coeffs = (int *) calloc(1, sizeof(int)); for (int i = 0; i < n; i++) { if (polys[i] == f) continue; int deg = polys[i]->deg - f->deg; if (deg < 0) continue; int coeff = polys[i]->coeffs[polys[i]->deg]; if (coeff == 0) continue; if (deg > et->deg) { et->coeffs = (int *) realloc(et->coeffs, (deg + 1) * sizeof(int)); for (int j = et->deg + 1; j <= deg; j++) { et->coeffs[j] = 0; } et->deg = deg; } et->coeffs[deg] = coeff; } return et; } // 判断两个多项式是否可约 int is_reducible(poly_t *f, poly_t *g) { // TODO: 实现判断多项式是否可约的代码 } // 计算Gröbner基 poly_t **groebner(poly_t **polys, int n) { // TODO: 实现计算Gröbner基的代码 } int main() { // TODO: 编写测试代码 return 0; } ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值