高斯消元法(含异或方程组求解)

  • 高斯消元法


  • 梗概:

高斯消元法(英语:Gaussian Elimination),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个行梯阵式

  • 算法:

思想:

通过逐行消去未知数将方程组化简成上三角形式(理想,有唯一解情况下,然后由后(最简的代数式,有唯一解则类型为Xi=val)往前代入方程组,最终得解。

举个栗子(增广矩阵):

          \begin{pmatrix} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{pmatrix}     \begin{pmatrix} 2 & 1 & -1 & 8 \\ 0 & \frac{1}{2} & \frac{1}{2} & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}      \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{pmatrix}

栗子为理想状况有唯一解

  • 解情况讨论:

对于非齐次线性方程组:

唯一解:矩阵的秩(等价于矩阵化阶梯后非零行数)r = n(未知量个数)

无穷多解:n != r

无解:出现(0 0 0 0 0 0 a)a != 0

自由变元个数 = n - r

对于齐次线性方程组:

唯一解(仅有0解r = n

有非零解(无穷多个):r < n

当齐次线性方程组方程个数<未知量个数,一定有非零解

           当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0

  • 普通方程组高斯消元模板:

#include<bits/stdc++.h>
using namespace std;
#define MAX_SIZE 1048
int Matrix[MAX_SIZE][MAX_SIZE];
int Free_x[MAX_SIZE]; //自由变元
int X_Ans[MAX_SIZE]; //解集
int Free_num=0;  //自由变元数
int gcd(int a,int b)
{
    return b==0? a : gcd(b,a%b);
}
int lcm(int a,int b)    //最小公倍数
{
    return a/gcd(a,b)*b;
}

int Guass(int Row,int Column) //系数矩阵的行,列
{
    int row=0,col=0,max_r;
    for(row=0;row<Row&&col<Column;row++,col++)
    {
        max_r=row;
        for(int i=row+1;i<Row;i++)    //找出当前列的最大值
            if(abs(Matrix[i][col])>abs(Matrix[max_r][col]))
                max_r=i;
        if(Matrix[max_r][col]==0)   //最大值为0,等价有自由元,记录
        {
            row--;
            Free_x[++Free_num]=col+1;
            continue;
        }
        if(max_r!=row)   //将最大值换到当前行
            for(int i=col;i<Column+1;i++)
                swap(Matrix[row][i],Matrix[max_r][i]);
        for(int i=row+1;i<Row;i++)  //消元
        {
            if(Matrix[i][col]!=0)
            {
                int LCM=lcm(abs(Matrix[i][col]),abs(Matrix[row][col]));
                int ta=LCM/abs(Matrix[i][col]);
                int tb=LCM/abs(Matrix[row][col]);
                if(Matrix[i][col]*Matrix[row][col]<0)//异号由减变加
                    tb=-tb;
                for(int j=col;j<Column+1;j++)
                    Matrix[i][j]=Matrix[i][j]*ta-Matrix[row][j]*tb;
            }
        }
    }
    //row跳出时表示矩阵非零行数
    
    for(int i=row;i<Row;i++)  //无解
        if(Matrix[i][Column]!=0)
            return -1;

    if(row<Column)   //无穷多解,返回自由变元数
        return Column-row;
        
        
    for(int i=Column-1;i>=0;i--)  //唯一解
    {
        int temp=Matrix[i][Column];
        for(int j=i+1;j<Column;j++)
            if(Matrix[i][j]!=0)
                temp-=Matrix[i][j]*X_Ans[j];
        X_Ans[i]=temp/Matrix[i][i];
    }
    return 0;
}
  • 异或方程组高斯消元模板:

#include<bits/stdc++.h>
using namespace std;
#define MAX_SIZE 350
#define ll long long
ll Matrix[MAX_SIZE][MAX_SIZE];
ll Free_x[MAX_SIZE];   //自由变元
ll X_Ans[MAX_SIZE];  //解集 
ll Free_num=0;  //自由变元数

ll Guass(ll Row,ll Column)  //系数矩阵的行和列
{
    ll row=0,col=0,max_r;
    for(row=0;row<Row&&col<Column;row++,col++)
    {
        max_r=row;
        for(ll i=row+1;i<Row;i++)   //找出当前列最大值
            if(abs(Matrix[i][col])>abs(Matrix[max_r][col]))
                max_r=i;
        if(Matrix[max_r][col]==0)  //记录自由变元
        {
            row--;
            Free_x[Free_num++]=col+1;
            continue;
        }
        if(max_r!=row)  //交换
            for(ll i=col;i<Column+1;i++)
                swap(Matrix[row][i],Matrix[max_r][i]);
        for(ll i=row+1;i<Row;i++)   //消元
        {
            if(Matrix[i][col]!=0)
            {
                for(ll j=col;j<Column+1;j++)
                    Matrix[i][j]^=Matrix[row][j];
            }
        }
    }
    for(ll i=row;i<Row;i++)   //无解
        if(Matrix[i][Column]!=0)
            return -1;

    if(row<Column)   //无穷多解
        return Column-row;
    
    //唯一解
    for(ll i=Column-1;i>=0;i--)
    {
        X_Ans[i]=Matrix[i][Column];
        for(ll j=i+1;j<Column;j++)
           X_Ans[i]^=(Matrix[i][j]&&X_Ans[j]);
    }
    return 0;
}

 

Gröbner基的特殊高斯消元算法通过特殊的高斯消元法来计算Gröbner基。这种算法可以处理规模很大的问题,因为它使用了一些技巧来减少计算量。 算法步骤: 1. 对于给定的理想$I$,构造一个包$I$的理想$J$,使得$J$的Gröbner基可以用特殊高斯消元法计算出来。这个步骤通常使用Buchberger算法来完成。 2. 对于$J$的Gröbner基$G$的每个元素$g_i$,计算一个消元子$f_i$,使得$f_i$是$g_i$中的最高项。 3. 对于每对消元子$f_i$和$f_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$f_j$。 4. 对于每个消元子$f_i$,计算一个被消元子$h_i$,使得$h_i$是$I$中所有多项式中不包$f_i$的最高项。 5. 对于每对消元子$f_i$和被消元子$h_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$h_j$。 6. 重复步骤4和5,直到没有可约的消元子和被消元子。 7. 对于每个消元子$f_i$和被消元子$h_i$,计算它们的最小公倍式$u_i$。 8. 返回$u_1,\dots,u_m$,它们组成了$I$的Gröbner基。 C代码实现: 以下是一个简单的C代码实现,用于计算给定多项式的Gröbner基。这个代码只是一个示例,可能需要进行修改才能处理更复杂的问题。 ```c #include <stdio.h> #include <stdlib.h> typedef struct { int deg; // 多项式的次数 int *coeffs; // 多项式的系数 } poly_t; // 计算两个多项式的最小公倍式 poly_t *lcm(poly_t *f, poly_t *g) { // TODO: 实现计算最小公倍式的代码 } // 计算多项式的消元子 poly_t *lead_term(poly_t *f) { poly_t *lt = (poly_t *) malloc(sizeof(poly_t)); lt->deg = f->deg; lt->coeffs = (int *) calloc(lt->deg + 1, sizeof(int)); lt->coeffs[lt->deg] = 1; return lt; } // 计算多项式的被消元子 poly_t *elim_term(poly_t *f, poly_t **polys, int n) { poly_t *et = (poly_t *) malloc(sizeof(poly_t)); et->deg = 0; et->coeffs = (int *) calloc(1, sizeof(int)); for (int i = 0; i < n; i++) { if (polys[i] == f) continue; int deg = polys[i]->deg - f->deg; if (deg < 0) continue; int coeff = polys[i]->coeffs[polys[i]->deg]; if (coeff == 0) continue; if (deg > et->deg) { et->coeffs = (int *) realloc(et->coeffs, (deg + 1) * sizeof(int)); for (int j = et->deg + 1; j <= deg; j++) { et->coeffs[j] = 0; } et->deg = deg; } et->coeffs[deg] = coeff; } return et; } // 判断两个多项式是否可约 int is_reducible(poly_t *f, poly_t *g) { // TODO: 实现判断多项式是否可约的代码 } // 计算Gröbner基 poly_t **groebner(poly_t **polys, int n) { // TODO: 实现计算Gröbner基的代码 } int main() { // TODO: 编写测试代码 return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值