SVM的高斯kernel 参数c和gamma说明

SVM使用高斯核时,C参数用于防止过拟合,而gamma(γ)参数决定了模型的非线性程度。gamma值越高,sigma值越低,意味着核函数的集中度更高,非线性行为更显著。C和gamma的值通过网格搜索和交叉验证确定,选择性能最好的模型参数。然后,通过5折交叉验证评估模型在训练数据上的性能。最后,通过ROC曲线验证模型对验证数据的预测效果。
摘要由CSDN通过智能技术生成

The SVM with a Gaussian kernel function has two such training parameters: C which controls overfitting of the model, and gamma (γ) which controls the degree of nonlinearity of the model. Gamma is inversely related to sigma which is a degree for spread around a mean in statistics: the higher the value of gamma, the lower the value of sigma, thus the less spread or the more nonlinear the behavior of the kernel. The values of these training parameters C and gamma are determined by grid search and cross validation: the model with the highest estimated performance determines the selected training parameters. Then, the performance of the constructed model is estimated by using 5-fold cross validation on the training data. Finally, the constructed model is validated by predicting the validation data and comparing these predictions with the real observations by means of ROC curves.

gamma(或Epsilon ε)---不敏感损失函数的参数,gamma越大,支持向量
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值