pandas绘图显示 : plt.show()
保存到本地 : plt.savefig(‘image.png’)
%matplotlib inline
- 1
import pandas as pd
import matplotlib.pyplot as plt
- 1
- 2
present = pd.read_table('data.txt', sep=' ')
- 1
present.shape
- 1
(63, 3)
present.columns
- 1
Index([u’year’, u’boys’, u’girls’], dtype=’object’) 可以看到这个数据集共有63条记录,共有三个字段:Year,boys,girls。为了简化计算将year作为索引
present_year = present.set_index('year')
- 1
plot是画图的最主要方法,Series和DataFrame都有plot方法。 我们可以这样看一下男生出生比例的趋势图:
present_year['boys'].plot()
plt.legend(loc='best')
- 1
- 2
 这是Series上的plot方法,通过DataFrame的plot方法,你可以将男生和女生出生数量的趋势图画在一起。
present_year.plot() #has index,column
- 1

present_year.girls.plot(color='g')
present_year.boys.plot(color='b')
plt.legend(loc='best')
- 1
- 2
- 3
 可以看到DataFrame提供plot方法与在多个Series调用多次plot方法的效果是一致。
present_year[:10].plot(kind='bar')
- 1
 plot默认生成是曲线图,你可以通过kind参数生成其他的图形,可选的值为:line, bar, barh, kde, density, scatter。
present_year[:10].plot(kind='barh')
- 1
 如果你需要累积的柱状图,则只需要指定stacked=True。
present_year[:10].plot(kind='bar', stacked=True)
- 1
 制作相对的累积柱状图,需要一点小技巧。 首先需要计算每一行的汇总值,可以在DataFrame上直接调用sum方法,参数为1,表示计算行的汇总。默认为0,表示计算列的汇总。
present_year.sum(1)[:5]
- 1
year 1940 2360399 1941 2513427 1942 2808996 1943 2936860 1944 2794800 dtype: int64 有了每一行的汇总值之后,再用每个元素除以对应行的汇总值就可以得出需要的数据。这里可以使用DataFrame的div函数,同样要指定axis的值为0。
present_year.div(present_year.sum(1),axis=0)[:10].plot(kind='barh', stacked=True)
- 1
 散点图和相关 plot也可以画出散点图。使用kind=’scatter’, x和y指定x轴和y轴使用的字段。
present_year.plot(x='boys', y='girls', kind='scatter')
- 1
 我们再来载入一下鸢尾花数据。
iris = pd.read_csv('iris.csv')
iris.head(5)
箱图 DataFrame提供了boxplot方法可以用来画箱图。
直方图和概率密度分布
多变量的可视化 Radviz
Parallel Coordinates
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
本文详细介绍了如何使用Pandas库进行数据可视化,包括绘制趋势图、散点图、箱图等,展示了各种图表类型的生成方法及参数设置,适用于数据分析和数据科学领域的读者。








1169

被折叠的 条评论
为什么被折叠?



