pip清华镜像源103

该博客展示了如何使用Python的sklearn库进行数据预处理,包括读取CSV数据、特征编码、数据划分、标准化操作。接着,博主通过KNN和高斯朴素贝叶斯两种模型进行分类,并计算模型评分,最后绘制了混淆矩阵,用于模型性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import pandas as pd
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler,MinMaxScaler,OrdinalEncoder
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn import preprocessing


def get_data():
    data = pd.read_csv("./Gender_Height_Weight_Index.csv")
    x = data.iloc[:, :3]
    y = data.iloc[:, -1]
    enc = preprocessing.OrdinalEncoder()
    x = enc.fit_transform(x)
    return x,y

#划分训练集和测试
def split_train_test(x,y):
    x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=9527,test_size=0.3)
    return x_train,x_test,y_train,y_test

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值