Ucinet学习笔记二:Data Analysis

本文介绍了使用Ucinet进行数据分析的过程,涉及Cluster Analysis、Consensus Analysis、Cohesion Analysis、Factor Analysis、Component Analysis和Cliques Analysis等方法。通过导入数据、设置参数,对这些分析方法进行了操作实践。此外,还讲解了数据处理中的‘二值化’技术,用于将数据分为两类,并介绍了具体的操作步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天主要学习了几种数据分析方法,包括:

Cluster Analysis(聚类分析)

Consensus Analysis(一致性分析) 

Cohesion Analysis(凝聚性分析)

Factor Analysis(因素分析)

Component Analysis(成分分析)

Cliques Analysis(派系分析)


这几种分析方法的操作大致相同,都是先导入数据,设置相关参数,然后进行相应分析即可。

其中Cluster Analysis和Consensus Analysis在Tools菜单内,Factor Analysis在Tools的子菜单Scaling/Decomposition内;

Cohesion在Network菜单内,Component在其子菜单Regions

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值