![](https://i-blog.csdnimg.cn/columns/default/20201014180756919.png?x-oss-process=image/resize,m_fixed,h_224,w_224)
自动驾驶汽车
文章平均质量分 76
自动驾驶汽车的相关资讯,技术和内容
zhumin726
这个作者很懒,什么都没留下…
展开
-
自动驾驶决策和控制系统的研究
**城市交通**:自动驾驶系统需要应对复杂的城市交通环境,包括行人、自行车和其他车辆。- **A*算法**:改进的Dijkstra算法,引入启发式函数,提高路径搜索效率。- **高速公路**:在高速公路环境中,自动驾驶系统主要关注车道保持、跟车和超车。- **感知不确定性**:传感器数据的不确定性和误差对决策和控制系统提出了挑战。- **战略层**:包括路线规划和导航,决定从起点到终点的总体路径。- **战术层**:涉及局部路径规划和决策,如超车、变道和避障。原创 2024-07-12 09:30:26 · 887 阅读 · 0 评论 -
自动驾驶技术的原理
1. **目标检测(Object Detection)**:识别并定位道路上的其他车辆、行人、动物、交通标志、信号灯等。- **路径规划**:基于视觉识别获得的环境信息,结合其他传感器(如激光雷达、雷达)的数据,规划车辆的行驶路径。6. **语义分割**:将图像划分为不同的区域,如道路、车道、人行道、建筑物等,帮助车辆理解复杂的环境。- **目标分类**:对检测到的目标进行分类,确定其类别,如行人、车辆、交通标志等。- **运动控制**:根据规划的路径,控制车辆的速度和方向,确保安全驾驶。原创 2024-07-09 09:46:58 · 1217 阅读 · 0 评论 -
人工智能在自动驾驶中的目标检测研究
视觉识别技术在自动驾驶中的目标检测扮演着不可或缺的角色。通过不断优化目标检测算法,结合最新的深度学习技术,自动驾驶车辆将能够更加准确、安全地感知周围环境,实现真正的无人驾驶。视觉识别技术使得车辆能够像人类一样“看”到周围环境,通过图像处理和深度学习算法,实现对周围目标的检测和识别。我们将详细讨论目标检测的基本原理、常用算法、最新进展、已有的开源项目及其在自动驾驶中的应用和挑战。通过这些详细的讨论和分析,我们可以更好地理解人工智能在自动驾驶中如何通过视觉识别进行目标检测,并进一步推动这一技术的研究和应用。原创 2024-07-10 08:41:33 · 1051 阅读 · 1 评论 -
Apollo 自动驾驶平台代码结构和源码分析
以下是该模块的主要组件和核心代码分析。通过上述代码示例和组件分析,可以看出Apollo中的LiDAR检测模块如何从原始点云数据出发,通过预处理、聚类和跟踪等步骤,实现对周围环境中障碍物的检测和感知。- **`detector`**:对象检测器的实现,包括不同类型的检测模型(如YOLO、SSD等)和检测算法。- **`tracker`**:对象跟踪器的实现,用于跟踪检测到的对象在多个帧之间的位置和运动。- **`logging`**:日志记录工具,用于记录检测和跟踪的过程信息,便于调试和分析。原创 2024-07-10 09:30:07 · 1857 阅读 · 0 评论 -
汽车电子助力转向系统研究
电子助力转向系统(EPS)作为一种先进的转向技术,不仅提高了驾驶的舒适性和安全性,还为自动驾驶技术提供了关键支持。电子助力转向系统作为现代汽车中的重要技术,不仅提升了传统车辆的驾驶体验和安全性,还为自动驾驶技术的实现提供了重要支持。助力的大小和方向根据驾驶员的输入和行驶状态动态调整。当驾驶员转动方向盘时,转向角传感器和转向力矩传感器检测相应的转向角度和转向力矩,并将这些信息以电信号的形式传递给ECU。- **转向传感器(Steering Sensor)**:检测驾驶员的转向输入(如转向角和转向力)。原创 2024-07-12 09:03:16 · 508 阅读 · 0 评论