**
1. dubbo
**
阿里开源的分布式服务架构以及流动计算架构。
架构的演进过程:
1)单一应用架构
当网站流量很小时,只需一个应用,将所有功能都部署在一起, 数据访问框架(ORM) 是关键。
2)垂直应用架构
将应用拆成互不相干的几个应用。
此时,用于加速前端页面开发的 Web框架(MVC) 是关键。
3)分布式服务架构
当垂直应用越来越多,应用之间交互不可避免,将核心业务抽取出来作为独立的服务,逐渐形成稳定的服务中心,使前端应用能更快速的响应多变的市场需求。
此时,用于提高业务复用及整合的 分布式服务框架(RPC) 是关键。
4)流动计算架构
当服务越来越多,此时需增加一个调度中心基于访问压力实时管理集群容量,提高集群利用率。
此时,用于提高机器利用率的 资源调度和治理中心(SOA) 是关键。
解决的痛点
在大规模服务化之前,应用可能只是通过RMI或Hessian等工具,简单的暴露和引用远程服务,通过配置服务的URL地址进行调用,通过F5等硬件进行负载均衡。
(1) 当服务越来越多时,服务URL配置管理变得非常困难,F5硬件负载均衡器的单点压力也越来越大。
此时需要一个服务注册中心,动态的注册和发现服务,使服务的位置透明。
并通过在消费方获取服务提供方地址列表,实现软负载均衡和Failover,降低对F5硬件负载均衡器的依赖,也能减少部分成本。
(2) 当进一步发展,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。
这时,需要自动画出应用间的依赖关系图,以帮助架构师理清理关系。
(3) 接着,服务的调用量越来越大,服务的容量问题就暴露出来,这个服务需要多少机器支撑?什么时候该加机器?
为了解决这些问题,第一步,要将服务现在每天的调用量,响应时间,都统计出来,作为容量规划的参考指标。
其次,要可以动态调整权重,在线上,将某台机器的权重一直加大,并在加大的过程中记录响应时间的变化,直到响应时间到达阀值,记录此时的访问量,再以此访问量乘以机器数反推总容量。
以上是Dubbo最基本的几个需求。