- 博客(10)
- 问答 (1)
- 收藏
- 关注
原创 IGCRRN: Improved Graph Convolution Res-Recurrent Network for spatio-temporal dependence capturing an
本文提出了一种用于交通流预测的深度学习模型IGCRRN。与现有的基于gcn的模型使用固定邻接矩阵来构建空间图不同,IGCRRN创建一个嵌入节点矩阵来学习隐藏在不同交通流序列中的有用知识。在训练过程中不断修改嵌入节点矩阵的元素,以便充分考虑和探索相关性贡献的异质性。然后,用残差连接块代替LSTM中的特征映射,将残差连接块与LSTM有机结合,提取交通流的时空依赖性。论文创新型不大,图卷积的残差连接部分可参考。
2022-09-01 19:45:58 477 1
原创 Time-Evolving Graph Convolutional Recurrent Network for Traffic Prediction论文笔记
本文提出了一种基于时间演化图卷积递归网络的流量预测模型。该方法采用张量分解方法生成自适应时间演化图(随时间变化的动态邻接矩阵),然后将这些时间演化图的图卷积模块集成到RNN结构中。在两个真实的交通数据集上的实验表明,TEGCRN比多个竞争基线模型更有优势,尤其是在短期预测方面。......
2022-08-31 21:49:45 590
原创 Linux无法删除文件夹 Device or resource busy
Linux无法删除文件夹 Device or resource busy1、查看资源占用进程 lsof +d /local/ 显示目录占用的进程2、kill掉进程 kill -9 进程ID
2022-04-08 10:03:53 2814
原创 matplotlib density=true 时概率和不为1
使用ax.hist()函数想要把数据转为密度直方图,直接使用density=true有时候y轴甚至会大于1。density=ture的意思是保证该面积的积分为1,并不是概率和为1,因此我们需要对其进行改进。最简单对方法就是对每个bin增加权重,强迫它为我们的概率值:weights = np.ones_like(myarray)/float(len(myarray))plt.hist(myarray, weights=weights)...
2021-12-01 16:45:38 5871
翻译 图卷积GCN详解
首发于神经网络--从入门到放弃写文章卷积神经网络CNN完全指南终极版(一)沉迷学习的糕糕要成为最可爱的产品经理 (握拳!关注她5,367 人赞同了该文章目录导读【1】导论【2】卷积运算【3】非线性激活【4】池化层 【5】全连接层【6】神经网络的训练与优化【7】想到再补充【1】导论先来说一写题外话...研究生入学后就被导师逼着学习神经网络,一开始非常盲目,先是在网上搜了一大堆的资料,各种什么“一文读懂卷积神经纹网络”,“叫你三分钟搭建属于自己的神经网络框架”,“五分钟速读神经网络全解”,之类的文章层出不穷
2021-11-12 18:40:58 4028
转载 图神经网络GNN详解
原文链接:最近火爆的人工智能2.0--图神经网络,究竟什么来路?1.火爆的图神经网络究竟什么来路?最近几年,作为一项新兴的图数据学习技术,图神经网络(GNN)受到了广泛的关注。2018年年末,发生了两件特殊的事情。图数据学习领域同时发表了三篇综述论文,这种现象体现了学术界对该项技术的高度认可;更有众多工业界与学术界的大佬联名上书,支持GNN。由DeepMind、谷歌大脑、MIT 和爱丁堡大学等公司和机构的 27 位科学家共同发表了一篇论文Relational inductive biases, deep l
2021-10-29 22:04:23 7846 1
原创 Microsoft Edge浏览器打不开
1、请确保浏览器已关闭,并且你对设备拥有管理权限。 如果设备中登录了多个用户,请确保针对所有用户关闭 Microsoft Edge。2、依次选择“开始” > “设置” > “应用” > “应用和功能”。3、在应用列表中,选择 Microsoft Edge,然后选择“修改”。 如果“修改”命令不可用,则可能是你的组织已安装Microsoft Edge,并且正在为你管理它。 如需帮助,请与你的系统管理员联系。4、如果出现提示:“是否要允许此应用对你的设备进行更改?”,请选择“是”。5、
2021-09-29 19:43:58 17270 1
转载 GCN详解
CNN 在图像识别等任务中具有重要作用,主要是因为 CNN 利用了图片在其域中的平移不变性。由于图结构不存在平移不变性,所以 CNN 无法直接在图上进行卷积。刚刚提到 CNN 之所以可以应用到图像而无法应用到图网络中主要是因为图像具有「平移不变性(translational invariance)」,而图网络不具备这一属性。那么问题来了,什么是平移不变形呢?我们知道对于 CNN 来说,其核心在于使用了基于卷积核的卷积操作来提取图像的特征,这里的卷积操作类似于对「计算区域内的中心节点和相邻节点进行加权求和」:
2021-09-26 09:17:33 3817 3
空空如也
有知道torcherry这个包的吗?
2022-04-08
TA创建的收藏夹 TA关注的收藏夹
TA关注的人