IGCRRN: Improved Graph Convolution Res-Recurrent Network for spatio-temporal dependence capturing and traffic flow prediction
总结
本文提出了一种用于交通流预测的深度学习模型IGCRRN。与现有的基于gcn的模型使用固定邻接矩阵来构建空间图不同,IGCRRN创建一个嵌入节点矩阵来学习隐藏在不同交通流序列中的有用知识。在训练过程中不断修改嵌入节点矩阵的元素,以便充分考虑和探索相关性贡献的异质性。然后,用残差连接块代替LSTM中的特征映射,将残差连接块与LSTM有机结合,提取交通流的时空依赖性。论文创新型不大,图卷积的残差连接部分可参考。
挑战
1、交通流的时间依赖性,周期性。
2、空间相关性。相邻道路之间的交通状况会相互影响,对于一些具有特殊功能的道路,交通状况不仅受局部相邻节点的空间依赖性影响,还受远处节点的空间依赖性影响。例如,地铁系统连接了两个相距遥远的地方,两个站点之间也会有影响。
3、异质性。交通流的异质性体现在空间和时间两个维度上。空间相关性在全局上是不相同的,这意味着不同位置的空间依赖不是固定的。在时间维度上,交通流虽然表现出一定的规律性(周期性),但其变化规律较大。
创新
本文提出了一种基于深度学习框架的交通流预测模型——增强图卷积残差循环神经网络(Improved Graph Convolution Res-Recurrent Network, IGCRRN),该模型集成了时间依赖性、空间依赖性和异质性。本研究的主要贡献如下:
1、设计包含随机生成参数的嵌入节点矩阵来描述空间和时间维度上的异质性,并在训练过程中以数据驱动的方式逐步校正其参数。(自适应图的方法)
2、发现了交通流的两个空间特性,即近程空间依赖性和长程空间依赖性。在保证较深层网络结构不影响预测结果的前提下,提出了一种基于剩余结构的叠置改进图卷积块对多层次依赖进行建模。
3、建立了基于改进图卷积网络的残差连通块、基于LSTM的递归层和基于全连通网络的输出层组成的端到端深度学习框架,用于交通流预测。
Method
Overview Method
sian
Improved graph convolution block
以节点嵌入的方式生成自适应图,方法和GraphWaveNet中一样:
Λ
a
p
t
=
sof
t
max
(
relu
(
T
A
⋅
T
A
T
)
)
\boldsymbol{\Lambda}_{a p t}=\operatorname{sof} t \max \left(\operatorname{relu}\left(\mathbf{T}_{A} \cdot \mathbf{T}_{A}^{T}\right)\right)
Λapt=softmax(relu(TA⋅TAT))
结合预定义图的方式是直接相加:
L
A
=
Λ
+
Λ
a
p
t
\mathbf{L}_{A}=\mathbf{\Lambda}+\mathbf{\Lambda}_{a p t}
LA=Λ+Λapt
图卷积计算的方式还是常规的方法,只不过又加了偏执项:
g
c
(
L
A
,
X
t
)
=
(
∑
m
=
0
M
−
1
T
m
(
L
A
)
X
t
)
Θ
+
b
=
(
∑
m
=
0
M
−
1
T
m
(
Λ
+
sof
tmax
(
relu
(
T
A
⋅
T
A
T
)
)
)
X
t
)
Θ
+
b
\begin{aligned} g c\left(\mathbf{L}_{A}, \mathbf{X}_{t}\right) &=\left(\sum_{m=0}^{M-1} T_{m}\left(\mathbf{L}_{A}\right) \mathbf{X}_{t}\right) \Theta+\mathbf{b} \\ &=\left(\sum_{m=0}^{M-1} T_{m}\left(\mathbf{\Lambda}+\operatorname{sof} \operatorname{tmax}\left(\operatorname{relu}\left(\mathbf{T}_{A} \cdot \mathbf{T}_{A}^{T}\right)\right)\right) \mathbf{X}_{t}\right) \Theta+\mathbf{b} \end{aligned}
gc(LA,Xt)=(m=0∑M−1Tm(LA)Xt)Θ+b=(m=0∑M−1Tm(Λ+softmax(relu(TA⋅TAT)))Xt)Θ+b
Residual connection block
作者认为,由于交通网络中道路连接复杂,交通流的空间依赖性存在范围更广。例如,交通拥堵状况不仅会影响周边地区的交通状况,还会影响远处道路的交通状况。这意味着交通流具有两种空间特性:近程空间依赖性和长程空间依赖性。因此,为了获得更好的预测结果,交通流预测需要同时考虑交通流的局部空间依赖性和全局空间依赖性。(随着图卷积层数的叠加可以捕获到更深层次的特征,也就是全局的空间依赖)
为此,作者使用了两层图卷积,并添加了残差连接,空间依赖性可以由低层次逐步提取到高层次。如下图:
Spatio-temporal dependence capturing model
模型基于LSTM,将前一时刻得到的隐藏状态和当前时刻的交通流数据一起作为每个IGCRRN元的输入。随着隐藏状态的不断传递,IGCRRN模型能够完全捕获隐藏在历史交通流中的时间依赖性。整体框架如图(a)。LSTM的内部单元结构如图(b),将残差卷积块代替了全连接层。
Experiments
数据集
数据集使用PEMSD4和PEMSD8的流量数据,数据集的详细信息如下:
消融实验
消融实验验证了改进的图卷积的有效性
流量预测实验