归并排序、交换排序、选择排序、插入排序总结

一、归并排序

递归实现===》自上向下

非递归排序===》自下向上

void Merge(int arr[],int low,int mid,int high,int tmp[])
{
	int i=low,j=mid+1;
	int k=-1;//记录辅助数组的下标
	while(i<=mid && j<=high)
	{
		if(arr[i]<arr[j])
			tmp[++k]=arr[i++];
		else
			tmp[++k]=arr[j++];
	}
	while(i<=mid)
		tmp[++k]=arr[i++];
	while(j<=high)
		tmp[++k]=arr[j++];

	for(int i=0;i<=k;++i)
		arr[i+low]=tmp[i];	
}

//递归排序属于自顶向下
void MergeSort1(int arr[],int low,int high,int tmp[])//high为数组长度减1
{
	//当low==high时就递归到只有一个元素,终止递归
	if(low<high)
	{
		int mid=low+(high-low)/2;//(low+high)/2;
		MergeSort1(arr,low,mid,tmp);
		MergeSort1(arr,mid+1,high,tmp);
		Merge(arr,low,mid,high,tmp);
	}
}
//非递归排序相当于自下向上
void MergeSort_pass(int arr[],int len,int k,int tmp[])//len为数组长度,k为步进
{
	int i=0;
	while(i<len-2*k+1)
	{
		Merge(arr,i,i+k-1,i+2*k-1,tmp);
		i=i+2*k;
	}
	if(i<len-k+1)
		Merge(arr,i,i+k-1,len-1,tmp);
}
void MergeSort2(int arr[],int len,int tmp[])
{
	int k=1;
	while(k<=len)
	{
		MergeSort_pass(arr,len,k,tmp);
		k*=2;
	}
}

时间复杂度分析:假设问题规模为N,运行时间为T(N)

总的时间分两部分:把N分为两半时,处理大小为N/2花费时间为T(N/2);合并花费时间与问题规模相同,为N。

总的时间为T(N)=2T(N/2)+N

等式两边同时除N   ==》  (T(N))/N=(T(N/2))/(N/2)+1

令N=N/2   ==》  (T(N/2))/(N/2)=(T(N/4))/(N/4)+1

令N=N/2   ==》  (T(N/4))/(N/4)=(T(N/8))/(N/8)+1
……

令N=N/2   ==》     (T(2))/2=(T(1))/1+1

所有的等式相加:(T(N))/N=T(1)+log2N(假设有从N到2有X个数,那就有2^x=N)

所以时间复杂度为:T(N)=O(Nlog2N)

稳定性:稳定

二、交换排序

(1)快速排序

递归实现       ==》先找中轴元素 再递归

非递归实现    ==》用栈实现

#include<iostream>
#include<stack>
#define SWAP(x,y) {int t;t=x;x=y;y=t;}
using namespace std;

int partition1(int arr[],int low,int high)//优化1
{
	int i,j,k;
	if(low<high)
	{
		k=arr[low];//将最左边的元素设为中轴元素
		i=low;
		j=high+1;

		while(true)
		{
			while(arr[++i]<k)//向左找
			{
				if(i==high)
					break;
			}
			while(arr[--j]>k)//向右找
			{
				if(j==low)
					break;
			}
			if(i>=j)
				break;

			SWAP(arr[i],arr[j]);
		}
		SWAP(arr[low],arr[j]);
	}
	return j;
}

int partition2(int arr[],int low,int high)//优化2
{
	int i,j,k;
	if(low<high)
	{
		k=arr[(low+high)/2];//将中间元素设为中轴元素
		i=low-1;
		j=high+1;

		while(true)
		{
			while(arr[++i]<k);
			while(arr[--j]>k);
			if(i>=j)
				break;
			SWAP(arr[i],arr[j]);
		}
	}
	return j;
}
int partition3(int arr[],int low,int high)//优化3
{
	int i,j,k;
	k=arr[high];//将中轴元素设为最后一个元素
	i=low-1;
	for(j=low;j<high;++j)
	{
		if(arr[j]<=k)
		{
			i++;
			SWAP(arr[i],arr[j]);
		}
	}
	SWAP(arr[i+1],arr[high]);
	return i+1;
}	

void QuickSort1(int *arr,int low,int high)//递归实现
{
	if(arr==NULL)
		return ;
	if(low<high)
	{
		int k=partition3(arr,low,high);
		QuickSort1(arr,low,k-1);
		QuickSort1(arr,k+1,high);
	}
}
void QuickSort2(int *arr,int low,int high)//非递归实现
{
	stack<int> st;
	int k;
	st.push(low);
	st.push(high);
	
	while(!st.empty())
	{
		high=st.top();
		st.pop();
		low=st.top();
		st.pop();
		k=partition3(arr,low,high);
		if(low<k-1)
		{
			st.push(low);
			st.push(k-1);
		}
		if(k+1<high)
		{
			st.push(k+1);
			st.push(high);
		}
	}
}

时间复杂度分析:

最坏情况:排序数组有序。每次递归后基准元素右边数组长度只比原先减1,每次分割后数组都会分割成一个大小为0和原数组

长度减一的子数组。

假设问题规模为N.

时间复杂度为分割时所花费的时间(O(N))加上左右两个子数组比较花费的时间。

T(N)=T(0)+T(N-1)+O(N)

令N=N-1  ==》 T(N-1)=T(0)+T(N-2)+O(N-1)

令N=N-1  ==》 T(N-2)=T(0)+T(N-3)+O(N-2)

……

T(2)=T(0)+T(1)+O(2)

所有的推导式相加

T(N)=(N-1)T(0)+T(1)+T(2)+T(3)+……+T(N)

=N-1+1+2+3+……+N

=(N(N-1))/2+N-1

=O(N^2)

最好的情况:每次划分完毕,划分的基准在序列近乎中间的位置。

时间复杂度T(N)=2T(N/2)+O(N)

等式两边同时除N   ==》  (T(N))/N=(T(N/2))/(N/2)+(O(N))/N

令N=N/2   ==》  (T(N/2))/(N/2)=(T(N/4))/(N/4)+1

令N=N/2   ==》  (T(N/4))/(N/4)=(T(N/8))/(N/8)+1

……

令N=N/2   ==》     (T(2))/2=(T(1))/1+1

所有的等式相加:(T(N))/N=T(1)+log2N(假设有从N到2有X个数,那就有2^x=N)

所以时间复杂度为:T(N)=O(Nlog2N)

稳定性:不稳定

快排之所以快是因为它高度优化的内部循环(分割),既不像归并需要辅助数组来回赋值元素,也不像堆排无法利用缓存并且有

许多无用的比较。

(2)、冒泡排序

void BubbleSort(vector<int> &vec)
{
	bool mark=false;
	for(int i=0;i<(vec.size()-1);++i)
	{
		//第i+1趟要比较的N-i-1次
		for(int j=0;j<(vec.size()-1-i);++j)
		{
			if(vec[j]>vec[j+1])
			{
				SWAP(vec[j],vec[j+1]);
				mark=true;
			}
		}
		if(mark==false)
			break;
	}
}

时间复杂度分析:假设问题规模为N

需要比较N-1趟,

第一趟比较N-1次

第二趟比较N-2次

……

第N-1趟比较1次

总共比较次数:1+2+3+……+N-1=(N(N-1))/2

时间复杂度为O(n^2)

稳定性: 稳定

三、选择排序

(1)、堆排序

void Sink(int arr[],int len,int rootindex)//下沉法进行堆调整;小堆根
{
	int root=arr[rootindex];
	int childindex=rootindex*2+1;//初始化为左孩子的下标
	
	while(childindex<len)//调整没有结束
	{
		if(childindex!=len-1 && arr[childindex]>arr[childindex+1])
		{
			childindex++;
		}
		if(root>arr[childindex])//*1
		{
			arr[rootindex]=arr[childindex];
			rootindex=childindex;
			childindex=rootindex*2+1;
		}
		else
			break;
	}
	arr[rootindex]=root;//*2
	/*
	当实现元素交换时只进行子节点元素上移,较小的父节点是通过*2这一句实现的
	*/
}
void HeepSort(int arr[],int len)
{
	if(len<2)
		return ;
	for(int rootindex=(len-2)/2;rootindex>=0;--rootindex)
		Sink(arr,len,rootindex);
	for(int i=len-1;i>=0;--i)
	{
		SWAP(arr[0],arr[i]);
		Sink(arr,i,0);
	}
}

时间复杂度分析:假设问题规模大小为N

时间复杂度为建堆花费时间加上“删除”最小元素花费时间之和。

建堆时间:堆中每个节点向下交换所花费的时间之和。堆中的节点最多交换到叶子节点,也既节点向下交换与所在高度有关系。

i.N个元素的堆,高度为h的节点最多有N/(2^(h+1))

ii.N个元素的堆的高度为floor(log2N)(log2N向下取整)

设高度为h的节点向下交换的代价为O(h)

建堆的时间复杂度为不同高度的每个节点向下交换的代价之和T1=(N/(2^2)+N/(2^3)+……+N/(2^(h+1)))*O(h)其中h={1,2,3……log2N)}=O(n)

“删除”最小元素花费时间:需要删除N-1次,删除包含两步:交换和堆调整。交换操作代价为常数,可忽略。T2=(N-1)*logN

故实时间复杂度为O(Nlog2N)

最后两时间相加堆排序的时间复杂度为O(Nlog2N)

稳定性:不稳定

(2)、直接选择排序

void Selete_Sort(vector<int> &vec)
{
	int tmp;
	int len=vec.size();
	for(int i=0;i<len-1;++i)
	{
		int minindex=i;
		for(int j=i+1;j<len;++j)
		{
			if(vec[j]<vec[minindex])
				minindex=j;
		}
		tmp=vec[minindex];
		vec[minindex]=vec[i];
		vec[i]=tmp;
	}
}

时间复杂度分析:假设问题规模为N

时间复杂度:需要选择N-1次,每次选择需要比较N-1次

T(N)=1+2+3+……+N-1=O(N2)

稳定性: 不稳定

四、插入排序

(1)、希尔排序

void Shell(vector<int> &vec,int gap_len)
{
	int len=vec.size();
	int j;
	int tmp;
	for(int i=gap_len;i<len;i++)
	{
		tmp=vec[i];
		for(j=i-gap_len;j>=0 && vec[j]>tmp;j-=gap_len)
		{
			vec[j+gap_len]=vec[j];
		}
		vec[j+gap_len]=tmp;
	}
}
void ShellSort(vector<int> &vec)
{
	Shell(vec,3);//多次分组,3为分组步进
	Shell(vec,1);
}

时间复杂度:时间复杂度为O(N^1.3),实际时间复杂度为O(log2N)~O(N^2)

稳定性:不稳定

(2)、直接插入排序

void InsertSort(vector<int> &vec)
{
	int tmp,int j;
	int len=vec.size();
	
	for(int i=1;i<len;++i)
	{        
		tmp=vec[i];
		for(j=i-1;j>=0 && vec[j]>tmp;--j)
			vec[j+1]=vec[j];

		vec[j+1]=tmp;
	}
}

时间复杂度分析:假设问题规模为N

需要插入N-1次,每次插入需要比较N-1次

T(N)=1+2+3+……+N-1=(N(N-1))/2

时间复杂度为O(N^2)

稳定性:稳定

五、总结

1、平均性能为O(N^2)的有:直接插入排序、选择排序、冒泡排序。当数据量较小时,这三种排序差不多;当数据量较大时,冒泡排序时间代价最高。

2、平均性能为O(Nlog2N)的有:快速排序、归并排序、希尔排序、堆排序。当数据量大时,这三种排序较好;当数据是随机的时,快排平均时间最短;但在基本有序的情况下,快排反而不好;若要求稳定,则选归并。

3、若数据初始基本有序(正序),选直接插入或者冒泡或者随机的快排。


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值