48. 旋转图像(Rotate Image)

题解

直接旋转

在这里插入图片描述
图像旋转,实际上是这四个位置上的数对应旋转。
因此,需要找到这四个位置索引的相互关系:
m a t r i x [ i ] [ j ] → m a t r i x [ j ] [ n − i − 1 ] → m a t r i x [ n − i − 1 ] [ n − j − 1 ] → m a t r i x [ n − j − 1 ] [ i ] matrix[i][j] \to matrix[j][n-i-1]\to matrix[n-i-1][n-j-1]\to matrix[n-j-1][i] matrix[i][j]matrix[j][ni1]matrix[ni1][nj1]matrix[nj1][i]
注意两个边界条件
行只需遍历一半 , [ 0 , n / / 2 ) [0,n//2) [0,n//2)
列需要在 [ i , n − i − 1 ) [i,n-i-1) [i,ni1)

复杂度分析

  • 时间复杂度: O ( n 2 ) O\left(n^{2}\right) O(n2)
  • 空间复杂度: O ( 1 ) O(1) O(1)

Python

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        n = len(matrix) 
        for i in range(n//2):
            for j in range(i, n - i - 1):
                matrix[i][j],matrix[j][n-i-1],matrix[n-i-1][n-j-1],matrix[n-j-1][i] = \
                matrix[n-j-1][i], matrix[i][j],matrix[j][n-i-1],matrix[n-i-1][n-j-1]

Java(待完成)

转置矩阵的性质

在这里插入图片描述
转置后:
在这里插入图片描述
每一行逆序:
在这里插入图片描述
逆置边界条件

列需要在 [ i , n ) [i,n) [i,n)

复杂度分析

  • 时间复杂度: O ( n 2 ) O\left(n^{2}\right) O(n2)
  • 空间复杂度: O ( 1 ) O(1) O(1)

Python

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        n=len(matrix)
        for i in range(n):
            for j in range(i,n):
                matrix[i][j],matrix[j][i]=matrix[j][i],matrix[i][j]
        for i in range(n):
            matrix[i].reverse()

Java(待完成)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值