119. 杨辉三角II(Pascal's TriangleII)

题解

O ( k ) O(k) O(k)空间复杂度,我们在118.杨辉三角基础上进行优化,仅保存上一行。

模拟法(动态规划)

  1. 特判,若 k = = 0 k==0 k==0,返回 [ 1 ] [1] [1]
  2. 初始化 d p = [ 1 , 1 ] dp=[1,1] dp=[1,1],表示第二行
  3. 遍历区间 [ 3 , k + 2 ) [3,k+2) [3,k+2),表示从第三行开始遍历:
    • 初始化 c u r = [ 1 , 0 , . . . , 0 , 1 ] cur=[1,0,...,0,1] cur=[1,0,...,0,1],长度为当前行数
    • c u r cur cur第二个元素到倒数第二个元素,利用动态规划: c u r [ j ] = d p [ j − 1 ] + d p [ j ] cur[j]=dp[j-1]+dp[j] cur[j]=dp[j1]+dp[j]
    • d p dp dp更新为 c u r cur cur
  4. 返回 d p dp dp

复杂度分析

  • 时间复杂度: O ( k 2 ) O(k^{2}) O(k2),等差数列求和。
  • 空间复杂度: O ( k ) O(k) O(k)

Python

class Solution:
    def getRow(self, rowIndex: int) -> List[int]:
        if(rowIndex==0):
            return [1]
        dp=[1,1]
        for i in range(3,rowIndex+2):
            cur=[0]*(i)
            cur[0]=cur[-1]=1
            for j in range(1,i-1):
                cur[j]=dp[j-1]+dp[j]
            dp=cur
        return dp

Java(待完成)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值