装饰器是程序开发中经常会用到的一个功能,用 好了装饰器,开发效率如虎添翼。
写代码要遵循开放封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:
封闭:已实现的功能代码块
开放:对扩展开发
先明白这段代码
第一波
def foo():
print(‘foo’)
foo # 表示是函数
foo() # 表示执行foo函数
第二波
def foo():
print(‘foo’)
foo = lambda x: x + 1
foo() # 执行lambda表达式,而不再是原来的foo函数,因为foo这个名字被重新指向了另外一个匿名函数,函数名仅仅是个变量,只不过指向了定义的函数而已,所以才能通过 函数名()调用,如果 函数名=xxx被修改了,那么当在执行 函数名()时,调用的就不知之前的那个函数了
def w1(func):
def inner():
# 验证1
# 验证2
# 验证3
func()
return inner
@w1
def f1():
print(‘f1’)
@w1
def f2():
print(‘f2’)
@w1
def f3():
print(‘f3’)
@w1
def f4():
print(‘f4’)
对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其无需做任何操作。
单独以f1为例
def w1(func):
def inner():
# 验证1
# 验证2
# 验证3
func()
return inner
@w1
def f1():
print(‘f1’)
python解释器就会从上到下解释代码,步骤如下:
def w1(func): ==>将w1函数加载到内存
@w1
没错, 从表面上看解释器仅仅会解释这两句代码,因为函数在 没有被调用之前其内部代码不会被执行。
从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章, @函数名 是python的一种语法糖。
上例@w1内部会执行一下操作:
执行w1函数 ,并将 @w1 下面的函数作为w1函数的参数,即:@w1 等价于 w1(f1) 所以,内部就会去执行:
def inner():
#验证 1
#验证 2
#验证 3
f1() # func是参数,此时 func 等于 f1
return inner # 返回的 inner,inner代表的是函数,非执行函数 ,其实就是将原来的 f1 函数塞进另外一个函数中
w1的返回值
将执行完的w1函数返回值 赋值 给@w1下面的函数的函数名f1 即将w1的返回值再重新赋值给 f1,即:
新f1 = def inner():
#验证 1
#验证 2
#验证 3
原来f1()
return inner
所以,想要执行 f1 函数时,就会执行 新f1 函数,在新f1 函数内部先执行验证,再执行原来的f1函数,然后将原来f1 函数的返回值返回给了业务调用者。
装饰器示例:例1:无参数的函数
from time import time, sleep # 导包
def timefun(func):
def wrapped_func():
print(“%s called at %s” % (func.name, time()))
func()
return wrapped_func
@timefun
def foo():
print(“I am foo”)
foo()
sleep(2)
foo()
上面代码理解装饰器执行行为可理解成
foo = timefun(foo)
foo先作为参数赋值给func后,foo接收指向timefun返回的wrapped_func
foo()
调用foo(),即等价调用wrapped_func()
内部函数wrapped_func被引用,所以外部函数的func变量(自由变量)并没有释放
func里保存的是原foo函数对象
例2:被装饰的函数有参数
from time import ctime, sleep
def timefun(func):
def wrapped_func(a, b):
print(“%s called at %s” % (func.name, ctime()))
print(a, b)
func(a, b)
return wrapped_func
@timefun
def foo(a, b):
print(a+b)
foo(3,5)
sleep(2)
foo(2,4)
例3:被装饰的函数有不定长参数
from time import ctime, sleep
def timefun(func):
def wrapped_func(*args, **kwargs):
print(“%s called at %s”%(func.name, ctime()))
func(*args, **kwargs)
return wrapped_func
@timefun
def foo(a, b, c):
print(a+b+c)
foo(3,5,7)
sleep(2)
foo(2,4,9)
例4:装饰器中的return
from time import ctime, sleep
def timefun(func):
def wrapped_func():
print(“%s called at %s” % (func.name, ctime()))
func()
return wrapped_func
@timefun
def foo():
print(“I am foo”)
@timefun
def getInfo():
return ‘—-hahah—’
foo()
sleep(2)
foo()
print(getInfo())
执行结果:
foo called at Fri Nov 4 21:55:35 2016
I am foo
foo called at Fri Nov 4 21:55:37 2016
I am foo
getInfo called at Fri Nov 4 21:55:37 2016
None
如果修改装饰器为return func(),则运行结果:
foo called at Fri Nov 4 21:55:57 2016
I am foo
foo called at Fri Nov 4 21:55:59 2016
I am foo
getInfo called at Fri Nov 4 21:55:59 2016
—-hahah—
总结:
一般情况下为了让装饰器更通用,可以有return
例5:装饰器带参数,在原有装饰器的基础上,设置外部变量
from time import ctime, sleep
def timefun_arg(pre=”hello”):
def timefun(func):
def wrapped_func():
print(“%s called at %s %s” % (func.name, ctime(), pre))
return func()
return wrapped_func
return timefun
下面的装饰过程
1. 调用timefun_arg(“itcast”)
2. 将步骤1得到的返回值,即time_fun返回, 然后time_fun(foo)
3. 将time_fun(foo)的结果返回,即wrapped_func
4. 让foo = wrapped_fun,即foo现在指向wrapped_func
@timefun_arg(“itcast”)
def foo():
print(“I am foo”)
@timefun_arg(“python”)
def too():
print(“I am too”)
foo()
sleep(2)
foo()
too()
sleep(2)
too()
可以理解为
foo()==timefun_arg(“itcast”)(foo)():