题目

Microsoft题目 收藏
1.      有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?

2.      一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?

3.      有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30, 第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人, 谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元, 于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?

4.      有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同, 而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?

5.      有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

 6.      你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?

 7.      你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?

8.      你有一桶果冻,其中有%%,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

9.      对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

 10.   想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

11.   一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

12.   两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

13.   1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

 

参考答案1.      一只两头点燃,另一只一头点燃,当第一只烧完后,第二只丙再头点燃,就可以得到15`

 2.      2,2,9,因为只有36 = 6*6*1 36 = 9 * 2 * 2

3.      怎么会是每人第天九元呢,每人每天 (25/3) + 1,那一元差在25 - 24 = 1

4.      每人取每双中的一只就可以了

5.      (D / 35 ) * 30 = D

6.      自己睁着眼睛挑一个红色的啊,这样是给红色最大的机会了,除了你是色盲,呵呵 ,当然他们的几率都是1/2。

 7.      一个中取一个编号,然后称一下就知道

8.      4个

 9.       当该数的方根为整数时超下,其它的超上。这样 1、4、9、16、25、36、49、64、81、100号超下

10.    因为照镜子时,镜子是与你垂直平行的,但在水平方向刚好转了180度。

 11.   应该是三个人: 1,若是两个人,设A、B是黑帽子,第二次关灯就会有人打耳光。原因是A看到B第一次没打耳光,就知道B也一定看到了有带黑帽子的人,可A除了知道B带黑帽子外,其他人都是白帽子,就可推出他自己是带黑帽子的人!同理B也是这么想的,这样第二次熄灯会有两个耳光的声音。 2,如果是三个人,A,B,C. A第一次没打耳光,因为他看到B,C都是带黑帽子的;而且假设自己带的是白帽子,这样只有BC戴的是黑帽子;按照只有两个人带黑帽子的推论,第二次应该有人打耳光;可第二次却没有。。。于是他知道B和C一定看到了除BC之外的其他人带了黑帽子,于是他知道BC看到的那个人一定是他,所以第三次有三个人打了自己一个耳光! 3,若是第三次也没有人打耳光,而是第四次有人打了耳光,那么应该有几个人带了黑猫子呢?大家给个结果看看^_^

 

12.   可以把圆看成一根绳子,大绳是小绳的2倍长,所以应该是2圈吧。

 13.   一开始20瓶没有问题,随后的10瓶和5瓶也都没有问题,接着把5瓶分成4瓶和1瓶,前4个空瓶再换2瓶,喝完后2瓶再换1瓶,此时喝完后手头上剩余的空瓶数为2个,把这2个瓶换1瓶继续喝,喝完后把这1个空瓶换1瓶汽水,喝完换来的那瓶再把瓶子还给人家即可,所以最多可以喝的汽水数为:20+10+5+2+1+1+1=40 

 

 

1.你让工人为你工作7天,给工人的回报是一根金条。金条平分成相连的7段,你必须在每天结束时都付费,如果只许你两次把金条弄断,你如何给你的工人付费?
2.现在小明一家过一座桥,过桥时候是黑夜,所以必须有灯。现在小明过桥要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30秒就会熄灭。问小明一家如何过桥?

3.微软招聘测试题目~~~~
10名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就此方案进行表决。如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。否则提出方案的海盗将被扔到海里,然后下提名最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。他们当然也不愿意自己被扔到海里。所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。此外,没有两名海盗是同等厉害的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。这是一伙每人都只为自己打算的海盗。
最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?
为方便起见,我们按照这些海盗的怯懦程度来给他们编号。最怯懦的海盗为1号海盗,次怯懦的海盗为2号海盗,如此类推。这样最厉害的海盗就应当得到最大的编号,在这样的编号提示下大家开始思考吧,看谁够得上微软的用人标准。

 

4.猜牌问题S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4
黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉
P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?
于是,S先生听到如下的对话:P先生:我不知道这张牌。Q先生:我知道你不知道这张牌。P先生:现在我知道这张牌了。
Q先生:我也知道了。听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?

 

5.一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?


6.有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?

 

7.有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,  而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?


8.有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

 

9.你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
10.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?

 

11.对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

 

12.想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
13.一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

 

14.两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

 

15. 1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?


16.有3顶红帽子,4顶黑帽子,5顶白帽子。让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。(所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。假设最前面那个人一定会知道自己戴的是黑帽子。为什么?

 

17.5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。问他们中谁的存活几率最大?提示:      1,他们都是很聪明的人      2,他们的原则是先求保命,再去多杀人      3,100颗不必都分完      4,若有重复的情况,则也算最大或最小,一并处死

 

18.假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?

19.卢姆教授说:“有一次我目击了两只山羊的一场殊死决斗,结果引出了一个有趣的数学问题。我的一位邻居有一只山羊,重54磅,它已有好几个季度在附近山区称王称霸。后来某个好事之徒引进了一只新的山羊,比它还要重出3磅。
开始时,它们相安无事,彼此和谐相处。可是有一天,较轻的那只山羊站在陡峭的山路顶上,向它的竞争对手猛扑过去,那对手站在土丘上迎接挑战,而挑战者显然拥有居高临下的优势。不幸的是,由于猛烈碰撞,两只山羊都一命呜呼了。  现在要讲一讲本题的奇妙之处。对饲养山羊颇有研究,还写过书的乔治·阿伯克龙比说道:“通过反复实验,我发现,动量相当于一个自20英尺高处坠落下来的30磅重物的一次撞击,正好可以打碎山羊的脑壳,致它死命。”如果他说得不错,那么这两只山羊至少要有多大的逼近速度,才能相互撞破脑壳?你能算出来吗?


20.据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?


21.已知: 每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机) 一箱油可供一架飞机绕地球飞半圈,
问题:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)

 

23.  12个球和一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)

24.一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?


25.在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?


26.烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?
#################################################################################1:  分段为1,2,4,付钱为第一天付1,第二天给2找回1,第三天付1,第四天付4找1+2,第五天付1,第六天付2找1,最后一天付1!

 

2: 现在小明一家过一座桥,过桥时候是黑夜,所以必须有灯。现在小明过桥要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30秒就会熄灭。问小明一家如何过桥?  小明+爷爷 过12秒,回1秒=13秒  小明+妈妈 过8秒,回1秒=9秒  小明+爸爸 过6秒,回1秒=7秒  小名背弟弟过=1秒
13+9+7+1=30秒!

 

3:按懦弱排好,最强为4号!分配为 4号自己不要,其他人分!其他人必然同意,因为少一个人就可以多分一份!  3号,若放弃金币,则由2号分配,否则另外两个必然不同意,被扔进海里!  2号,不管怎么分配都会被扔到海里!同理3号也会被扔到海里!  最后剩下1号和4号,4号最强,不管1号怎么分,都要把1号扔进海里!

 

4: P先生知道点数,Q先生知道花色P先生:我不知道这张牌。  说明这张牌有两种或以上花色,除去只有一种花色的牌剩下
A,4,5,QQ先生:我知道你不知道这张牌。也说明这张牌有两种或以上花色,而且他知道的花色有多个数!P先生:现在我知道这张牌了。    从Q的话知道这个花色在剩下的牌里面只有1张!即 黑桃45:2*2*9=36

 

6: 应该用25+1*3+2=30,不能用27来加!

 

7:在太阳下晒,温度高的是黑袜子!

 

8:设两地相距为S,小鸟飞的距离为D=[S/(15+20)]*30

9:50%

10:把罐子放水里面,排水量大的被污染

11:第一次拨,所有的灯为关,最后为关的灯号码为2的双数次方,最大为2的6方64号!

12:镜子是对称的,而不是中心对称的!

13:黑的至少有一顶第一次开灯,看见别人有黑帽子,所以没有拍嘴巴,带黑帽子的人数>1第二次开灯,如果只2个人带黑帽子,第一次又没有人拍嘴巴,则第二次肯定知道自己是黑帽子,所以带黑帽子的人数>2第三次就意识到自己是黑帽子,所以带黑帽子的人是3个!

14:同样是2圈

15:20+10+5+2+1+1=39太晚了,今天就到这里!

16:这一题推导麻烦,共12个帽子,外表看越在前面得人知道的最少,其实越在前面得到的推理条件就越多,关键不是自己看到的帽子的数量,而是不说话的人的数量,由最后一个人即10号不知道就可以知道连他自己本身在内的3个帽子的颜色在3+4+5-9-1=2种以上,而前面9个人的帽子的颜色都确定,唯一不知道的是自己的帽子的颜色在2种颜色中的一种!那9号知道前面8个人的帽子的颜色,和10号以及多的两个帽子的颜色的种类,但10号仍然不知道自己的帽子的颜色,可知帽子颜色的分布应该是有规律的,在前面所有的人中每种颜色的帽子都有,但又不是每种都全部被人带着,所以10号和剩下2个帽子是每种颜色一种!知道这个就简单了,依此类推,第一个人虽然看不见自己的帽子也能知道自己的颜色!

 

17:且先不说全部拿光,因为5个人,我给他们按顺序安排5个位置,题目要求不能数目相同,则一个位置座一个人!因为两个人中间的人必然不会被杀,为先保命必然会一个挨一个座,所以最后一个人必然被处死!然后到推,第一个人存活的几率最大!(此题不必在意拿多少豆子,因为豆子相差的大,被处死的几率也大,所以他们拿的豆子的数量必然会是一组连续的数字)

 

18:要一定能拿到100号球,因为自己先拿,只需要倒数第2回合剩下6个球即可!按每人拿一次为一个回合,每个回合两个人所拿的球的总数为6个,那么只需要100-x-1为6的整数倍即可,所以X=3

 

20:这里出现的数字有11-7=4,7-4=3,11-3=8,8-7=1,7-1=6,11-6=5,7-5=2,至于怎么倒大家自己去想!

 

21:
这里的要点是一架飞机一个油箱,为了省油可以放弃飞机,那么假设X个飞机,起飞后就互相加油,保持只用一个油箱的油,而其他的油箱为满,于是偶一个油箱能提供X个飞机飞行(1/x)*1/2圈,那么就简单了!有[1+1/2+1/3+……1/x]*1/2>=1
可得只要x=4即可,即只要有4架飞机就可以了!

 

23:12个球,每次分一般,最后一次拿一个出来称,相同则拿出来的是不同的,13个球就先拿一个出来,按12个球的方法称即可!

 

24:一个真,一个假,那么 真*假=假 ,只要随便问一个人“路怎么走”,问另一个人“他的话对吗?”然后按相反的方向走即可!

 

26:把绳子对折1次,两头同时烧即是15分钟!

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/nicephil/archive/2007/11/12/1880940.aspx

 

5、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
其实题目不知所云。我知道要是一个罐子放一个红球,另一个罐子放49个红球和50个蓝球,概率接近75%,这是极限。只是题目的意思……出题的严谨性不敢恭维。
 
6、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
每个药丸都有一定的重量??是不是已知的?如果不是,题目无解。
如果是:1号罐取1丸,2号罐取2丸,3号罐取3丸,4号罐取4丸,称量该10个药丸,比正常重量重几就是几号罐的药有问题(前提是要有足够的药丸)
 
7、对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。
凡是1的倍数反方向拨一次开关:全部关掉;
2的倍数反方向又拨一次开关:2的倍数全部打开;
3的倍数反方向又拨一次开关:3的倍数除了6的倍数全部打开,6的倍数全部关闭。
所以,最后除了2和3的倍数但不是6的倍数外全是关闭的。
 
8、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
轴对称?唯一的答案了。
 
9、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
这个问题……理论答案为3,既黑帽子数同关灯次数。不过要是没有如强盗分金币那种不诚实的处罚的话,谁会打自己……
 
10、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
都是2周,只要考虑周长即可。
 
11、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
40瓶,那是需要借瓶子的,现在能借到吗?(2n)
39瓶,顺便你还能有一个空瓶留做纪念。(2n­-1)
 
12、确定帽子颜色问题
简介:这是一道经典的趣味逻辑题。
详细介绍:
有3顶红帽子,4顶黑帽子,5顶白帽子。让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。(所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。假设最前面那个人一定会知道自己戴的是黑帽子。为什么?
“如果他回答说不知道,就继续问他前面那个人。”这句话纯属误导,没有任何意义。这道题所要知道的是“为什么最前面那个人一定会知道自己戴的是黑帽子”而已。
而这道题有没有答案,我只能说,谁去找这道题的答案,纯属无聊。似乎我也很无聊,那么我就说一下答案好了:题目根本不成立,又何来答案!
当然如果你说我钻牛角尖,那么我要告诉你的是,至少到第三个人时,他一定知晓自己戴的是什么颜色的帽子了(可能更早就有人知道了),那么怎么会问到第一个人去呢??
 
13、称苹果问题
简介:不是脑筋急转弯,大家想想看。
详细介绍:
10个箱子,每个箱子10个苹果,其中一个箱子的苹果是9两/个,其他的都是1斤/个。 要求利用一个秤,只秤一次,找出那个装9两/个的箱子。
答案同6:1号箱子取1个苹果,2号箱子取2个苹果,3号箱子取3个苹果……10号箱子取10个苹果,称量该55个苹果,比正常重量轻几两就是几号箱子的苹果有问题。
 
14、囚犯活命问题
简介:一道真正难倒亿人的智力题,这是微软的面试题。
详细介绍:
5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。问他们中谁的存活几率最大?提示:
1,他们都是很聪明的人
2,他们的原则是先求保命,再去多杀人
3,100颗不必都分完
4,若有重复的情况,则也算最大或最小,一并处死
貌似微软很残忍的说。先说说答案吧。答案就是微软太残忍,没有人有必活的取法,从第一个开始就是如此,所以他会以最多的杀人数去取,那就是拿平均数,当然这也是他唯一拥有最大存活几率的取法。接下去都是平均数,于是全死。
还有一个可以争论点,那就是所谓的重复情况到底指的是所有的重复还是仅仅指最大、最小值不只一个。如果是第一种情况的话,没有必要加上“也算最大或最小”这么一句话。在那种情况下,所有人仍会取平均数,结果仍是全死。这种情况下之所以都会取平均数是在于第5个人必死,于是他会拉人当垫背;接着第4个人、第3个人、第2个人也是一样。
 
15、乒乓球问题
简介:该题由中华谣网站改造,有一定难度。
详细介绍:
假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?
答案是4个。必须保证之后每一轮剩余的数目是6的倍数。
 
16、山羊的速度
简介:无
详细介绍:
卢姆教授说:“有一次我目击了两只山羊的一场殊死决斗,结果引出了一个有趣的数学问题。我的一位邻居有一只山羊,重54磅,它已有好几个季度在附近山区称王称霸。后来某个好事之徒引进了一只新的山羊,比它还要重出3磅。 开始时,它们相安无事,彼此和谐相处。可是有一天,较轻的那只山羊站在陡峭的山路顶上,向它的竞争对手猛扑过去,那对手站在土丘上迎接挑战,而挑战者显然拥有居高临下的优势。不幸的是,由于猛烈碰撞,两只山羊都一命呜呼了。
  现在要讲一讲本题的奇妙之处。对饲养山羊颇有研究,还写过书的乔治·阿伯克龙比说道:“通过反复实验,我发现,动量相当于一个自20英尺高处坠落下来的30磅重物的一次撞击,正好可以打碎山羊的脑壳,致它死命。”如果他说得不错,那么这两只山羊至少要有多大的逼近速度,才能相互撞破脑壳?你能算出来吗?
磅? 英尺?靠,英国人出的还是美国人出的?去死吧。抵制英制!
 
17、酒肆老板娘的难题
简介:无
详细介绍:
据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?
5*7-3*11=2或者4*11-6*7=2
这就是答案。
 
18、一道关于飞机加油的问题
简介:无
详细介绍:
已知: 每个飞机只有一个油箱,飞机之间可以相互加油(注意是相互,没有加油机)一箱油可供一架飞机绕地球飞半圈, 问题:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
3架飞机5架次,飞法: ABC 3架同时起飞,1/8处,C给AB加满油,C返航,1/4处,B给A加满油,B返航,A到达1/2处,C从机场往另一方向起飞,3/4处,C同已经空油箱的A平分剩余油量,同时B从机场起飞,AC到7/8处同B平分剩余油量,刚好3架飞机同时返航。所以是3架飞机5架次。
微软出的题似乎和微软一样不择手段,反飞都可以,不过也没说不可以……
 
19、你让工人为你工作7天,回报是一根金条,这个金条平分成相连的7段,你必须在每天结束的时候给他们一段金条。如果只允许你两次把金条弄断,你如何给你的工人付费?
两次弄断就应分成三份,我把金条分成1/7、2/7和4/7三份。这样,第1天我就可以给他1/7;第2天我给他2/7,让他找回我1/7;第3天我就再给他1/7,加上原先的2/7就是3/7;第4天我给他那块4/7,让他找回那两块1/7和2/7的金条;第5天,再给他1/7;第6天和第2天一样;第7天给他找回的那个1/7。这和货币为什么只有1、2、5就可以一个道理。
 
20、门外三个开关分别对应室内三盏灯,线路良好,在门外控制开关时候不能看到室内灯的情况,现在只允许进门一次,确定开关和灯的对应关系?
这种题目,我开始无语,如果一个人没有上过物理课或者不知道灯泡开了之后会发热的话,谁会做?这是发散性思维还是创造性思维?明明只是已有发现的综合运用,很适合微软这种抄了别人东西拿去卖钱的公司!
 
21、S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4,黑桃J、8、4、2、7、3,草花K、Q、5、4、6,方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对话:
P先生:我不知道这张牌。//红桃A、Q、4,黑桃4,草花Q、5、4,方块A、5
Q先生:我知道你不知道这张牌。??这句话是有问题的,应该为:我一开始就知道你不知道这张牌。//如果按原来的话,我们还可以认为是Q先生是在P先生说完话后得出的结论。那么我们就无法将草花排除。//红桃A、Q、4,方块A、5
P先生:现在我知道这张牌了。//红桃Q、4,方块5
Q先生:我也知道了。//方块5
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?
方块5
 
22现在小明一家过一座桥,过桥时候是黑夜,所以必须有灯。现在小明过桥要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30秒就会熄灭。问小明一家如何过桥?
第一步,小明与弟弟过桥,小明回来,耗时4秒;第二步,小明与爸爸过河,弟弟回来,耗时9秒;第三步,妈妈与爷爷过河,小明回来,耗时13秒;最后,小明与弟弟过河,耗时4秒,总共耗时30秒,多么惊险!
 
1、画线
简介:(3分钟-20分钟)
详细介绍:
在9个点上画10条直线,要求每条直线上至少有三个点?
两点确定一条直线,三点……
 
2、称球
简介:(5分钟-1小时)
详细介绍:
12个球和一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)
12个球时:
称量矩阵J= [0, 0, 0, 0, 1,-1, 1,-1, 1,-1, 1,-1];
[0, 1,-1,-1, 0, 0, 0,-1, 1, 1,-1, 1];
[1, 0,-1, 1, 0,-1,-1, 0,-1, 0, 1, 1].
相应三次称量两边的放法:
左边5,7,9,11 :右边6,8,10,12;
左边2,9,10,12:右边3,4,8,11;
左边1,4,11,12:右边3,6,7,9 。
结果为:1号球,且重 -平、平、左;1号球,且轻 -平、平、右
2号球且重:平、左、平;2号球且轻:平、右、平
3号球且重:平、右、右;3号球且轻:平、左、左
4号球且重:平、右、左;4号球且轻:平、左、右
5号球且重:左、平、平;5号球且轻:右、平、平
6号球且重:右、平、右;6号球且轻:左、平、左
7号球且重:左、平、右;7号球且轻:右、平、左
8号球且重:右、右、平;8号球且轻:左、左、平
9号球且重:左、左、右;9号球且轻:右、右、左
10号球且重:右、左、平;10号球且轻:左、右、平
11号球且重:左、右、左;11号球且轻:右、左、平
12号球且重:右、左、左;12号球且轻:左、右、右
 
13个球时:把球分4组(4,4,4,1),第13个球单独1组,结果除了上面的之外还有一个
13号球:平、平、平,只是无法判断轻重。
 
3、问路
简介:(20秒-2分钟)
详细介绍:
一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?
怎样去你的国家?选另一条路。
怎样去他的国家?顺着他们说的路走。
 
4、称水
简介:(40秒-3分钟)回答
详细介绍:
如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?
3*3-5=4或2*5-2*3=4
 
5、确定颜色
简介:(5秒-1分钟)回答
详细介绍:
你有一桶果冻,其中有黄色、绿色、红色三种,闭上眼睛抓取同种颜色的两个。抓取多少个就可以确定你肯定有两个同一颜色的果冻?
4个
 
6、标题:海盗分宝石[智力测试题]
内容: 在美国,据说20分钟内能回答出这道题的人,平均年薪在8万美金以上。这是一道很有趣的推理题。
详细介绍:
在美国,据说20分钟内能回答出这道题的人,平均年薪在8万美金以上。这是一道很有趣的推理题。据统计,在美国20分钟内能回答出这道题的人,平均年薪在8万美金以上。 5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。他们决定这么分: 1。抽签决定自己的号码(1,2,3,4,5) 2。首先,由1号提出分配方案,然后大家5人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。 3。如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。 4。以次类推...... 条件: 每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。 问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化。
98、0、1、0、1,似乎条件少了:海盗们都是凶残的希望他人死掉。没有这个的话,100、0、0、0、0似乎也是可以接受的。
 
7、算指针的重合次数
简介:(5分钟-15分钟)
详细介绍:
在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?
24次
 
8、时间问题
简介:(这道题我当初想了一个小时)
详细介绍:
烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?
只要能烧出15分钟就行了。要4根就够了,先点燃3根,就叫1、2、3好了,1两边一起点燃,2、3点一边,这样1烧完还有30分钟;接着把2的另一边也点燃,等2烧完时3还能烧15分钟,从现在开始,3烧完后再烧完4就是一个小时十五分钟。
 
9、过桥问题
简介:无
详细介绍:
在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。如果各自单独过桥的话,四人所需要的时间分别是1、2、5、8分钟;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,如何设计一个方案,让这四人尽快过桥。
设1、2、3、4四人分别耗时1、2、5、8分钟。
1、2先过,耗时2分钟;1回,耗时3分钟;
3、4过河,耗时11分钟;2回,耗时13分钟;
1、2过河,耗时15分钟。
 
没有答案型
简介:这些题显然不是考你智力。而考的是你的反应能力。这种题大多数没有答案,但是要看你的反应喽!
详细介绍:
1.为什么下水道的盖子是圆的?
2.中国有多少辆汽车?
3.将汽车钥匙插入车门,向哪个方向旋转就可以打开车锁?
4.如果你要去掉中国的34个省(含自治区、直辖市和港澳特区及台湾省)中的任何一个,你会去掉哪一个,为什么?
5.多少个加油站才能满足中国的所有汽车?
6.想象你站在镜子前,请问,为什么镜子中的影象可以颠倒左右,却不能颠倒上下?
7.为什么在任何旅馆里,你打开热水,热水都会瞬间倾泻而出?
8.你怎样将Excel的用法解释给你的奶奶听?
9.你怎样重新改进和设计一个ATM银行自动取款机?
10.如果你不得不重新学习一种新的计算机语言,你打算怎样着手来开始?
11.如果你的生涯规划中打算在5年内受到奖励,那获取该项奖励的动机是什么?观众是谁? 12.如果微软告诉你,我们打算投资五百万美元来启动你的投资计划,你将开始什么样商业计划?为什么?
13.如果你能够将全世界的电脑厂商集合在一个办公室里,然后告诉他们将被强迫做一件事,那件事将是什么?


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/chxzly1981/archive/2007/12/04/1915865.aspx

 

 

7、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

答:4个


--------------------------------------------------------------------------------

8、对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

答:若实际操作求解会相当繁琐。我们知道,就某个亮着的灯而言,如果拨其开关的次数是奇数次,那么,结果它一定是关着的。根据题意可知,号码为N的灯,拨开关的次数等于N的约数的个数,约数个数是奇数,则N一定是平方数。因为10的平方等于100,可知100以内共有10个平方数,即,最后关熄状态的灯共有10盏,编号为1、4、9、16、25、36、49、64、81、100。


--------------------------------------------------------------------------------

9、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

答:镜像对称的轴是人的中轴


--------------------------------------------------------------------------------

10、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

答:有三个人戴黑帽。假设有N个人戴黑,当N=1时,戴黑人看见别人都为白则能肯定自己为黑。于是第一次关灯就应该有声。可以断定N> 1。对于每个戴黑的人来说,他能看见N-1顶黑帽 ,并由此假定自己为 白。但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了。所以第N次关灯就有N个人打自己。


--------------------------------------------------------------------------------

11、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

答:无论内外,小圆转两圈。小圆、大圆经历的距离相等。


--------------------------------------------------------------------------------

12、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

答:39瓶,从第2瓶开始,相当于1元买2瓶。

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/Kalen_Chen/archive/2007/06/12/1649062.aspx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值