智力题

1.(猜牌问题)猜牌问题 
S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对话: P先生:我不知道这张牌。Q先生:我知道你不知道这张牌。 P先生:现在我知道这张牌了。 Q先生:我也知道了。 听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。 请问:这张牌是什么牌? 
解题思路: 
由第一句话“P先生:我不知道这张牌。”可知,此牌必有两种或两种以上花色,即可能是A、Q、4、5。如果此牌只有一种花色,P先生知道这张牌的点数,P先生肯定知道这张牌。由第二句话“Q先生:我知道你不知道这张牌。”可知,此花色牌的点数只能包括A、Q、4、5,符合此条件的只有红桃和方块。Q先生知道此牌花色,只有红桃和方块花色包括A、Q、4、5,Q先生才能作此断言。 由第三句话“P先生:现在我知道这张牌了。”可知,P先生通过“Q先生:我知道你不知道这张牌。”判断出花色为红桃和方块,P先生又知道这张牌的点数,P先生便知道这张牌。据此,排除A,此牌可能是Q、4、5。如果此牌点数为A,P先生还是无法判断。 由第四句话“Q先生:我也知道了。”可知,花色只能是方块。如果是红桃,Q先生排除A后,还是无法判断是什么。

 

逻辑推理题,答案是方块5。推理过程如下:
1.P说不知道这张牌,那么点数应该是在花色之间不唯一的,这些点数是A、Q、4、5。
2.Q知道P不知道这张牌,说明这色牌的点数全部都不唯一,所以可能是红桃,也可能是方块。
3.由Q的判断,P接下来知道了这张牌,也就是说P可以在知道了花色是红桃或者方块以后做出正确的判断,因此这张牌不可能是A,剩下的只有红桃Q、4和方块5。
4.Q也知道了这张牌。如果花色是红桃,那他是无法做出判断的,所以花色一定是方块。

 

2.

有个大水池,你现在只有一个5升的杯子和一个3升的杯子,问如何量出4升的水? 
答:先把3ml杯子倒满. 再把3ml的水全倒进5ml杯子. 
再把3ml杯子倒满 把3ml杯子的水倒进5ml杯子.直到5ml杯子满 
即.3ml杯子里还剩1ml水. 
把5ml杯子倒光水 把1ml水倒进5ml杯子. 再把3ml杯子倒满 把3ml杯子的水都倒进5ml杯子 
则.5ml杯子里有4ml水

 

3.假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
答:由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。

 

4:现在小明一家过一座桥,过桥时候是黑夜,所以必须有灯。现在小明过桥要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。每次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30秒就会熄灭。问小明一家如何过桥? 

参考答案:这类智力题目,其实是考察应聘者在限制条件下解决问题的能力。具体到这道题目来说,很多人往往认为应该由小明持灯来来去去,这样最节省时间,但最后却怎么也凑不出解决方案。但是换个思路,我们根据具体情况来决定谁持灯来去,只要稍稍做些变动即可:第一步,小明与弟弟过桥,小明回来,耗时4秒;第二步,小明与爸爸过河,弟弟回来,耗时9秒;第三步,妈妈与爷爷过河,小明回来,耗时13秒;最后,小明与弟弟过河,耗时4秒,总共耗时30秒,多么惊险! 

 

5. 周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。"等等,妈妈还要考你一个题目,"她接着说,"你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?"爱动脑筋的周雯,是学校里有名的"小机灵",她只想了一会儿就做到了。请你想想看,"小机灵"是怎样做的?


设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。

 

6.一间囚房里关押着两个犯人。每天监狱都会为这间囚房提供一罐汤,让这两个犯人自己来分。起初,这两个人经常会发生争执,因为他们总是有人认为对方的汤比自己的多。后来他们找到了一个两全其美的办法:一个人分汤,让另一个人先选。于是争端就这么解决了。可是,现在这间囚房里又加进来一个新犯人,现在是三个人来分汤。必须寻找一个新的方法来维持他们之间的和平。该怎么办呢?按:心理问题,不是逻辑问题


是让甲分汤,分好后由乙和丙按任意顺序给自己挑汤,剩余一碗留给甲。这样乙和丙两人的总和肯定是他们两人可拿到的最大。然后将他们两人的汤混合之后再按两人的方法再次分汤。

 

 

7. 一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)教授问第一个学生:你能猜出自己的数吗?回答:不能,问第二个,不能,第三个,不能,再问第一个,不能,第二个,不能,第三个:我猜出来了,是144!教授很满意的笑了。请问您能猜出另外两个人的数吗?

经过第一轮,说明任何两个数都是不同的。第二轮,前两个人没有猜出,说明任何一个数都不是其它数的两倍。现在有了以下几个条件:1.每个数大于02.两两不等3.任意一个数不是其他数的两倍。每个数字可能是另两个之和或之差,第三个人能猜出144,必然根据前面三个条件排除了其中的一种可能。假设:是两个数之差,即x-y=144。这时1(x,y>0)和2(x!=y)都满足,所以要否定x+y必然要使3不满足,即x+y=2y,解得x=y,不成立(不然第一轮就可猜出),所以不是两数之差。因此是两数之和,即x+y=144。同理,这时1,2都满足,必然要使3不满足,即x-y=2y,两方程联立,可得x=108,y=36。

这两轮猜的顺序其实分别为这样:第一轮(一号,二号),第二轮(三号,一号,二号)。这样分大家在每轮结束时获得的信息是相同的(即前面的三个条件)。

那么就假设我们是C,来看看C是怎么做出来的:C看到的是A的36和B的108,因为条件,两个数的和是第三个,那么自己要么是72要么是144(猜到这个是因为72的话,108就是36和72的和,144的话就是108和36的和。这样子这句话看不懂的举手):

假设自己(C)是72的话,那么B在第二回合的时候就可以看出来,下面是如果C是72,B的思路:这种情况下,B看到的就是A的36和C的72,那么他就可以猜自己,是36或者是108(猜到这个是因为36的话,36加36等于72,108的话就是36和108的和):

如果假设自己(B)头上是36,那么,C在第一回合的时候就可以看出来,下面是如果B是36,C的思路:这种情况下,C看到的就是A的36和B的36,那么他就可以猜自己,是72或者是0(这个不再解释了):
如果假设自己(C)头上是0,那么,A在第一回合的时候就可以看出来,下面是如果C是0,A的思路:这种情况下,A看到的就是B的36和C的0,那么他就可以猜自己,是36或者是36(这个不再解释了),那他可以一口报出自己头上的36。(然后是逆推逆推逆推),现在A在第一回合没报出自己的36,C(在B的想象中)就可以知道自己头上不是0,如果其他和B的想法一样(指B头上是36),那么C在第一回合就可以报出自己的72。现在C在第一回合没报出自己的36,B(在C的想象中)就可以知道自己头上不是36,如果其他和C的想法一样(指C头上是72),那么B在第二回合就可以报出自己的108。现在B在第二回合没报出自己的108,C就可以知道自己头上不是72,那么C头上的唯一可能就是144了。

 

8.有一人有240公斤水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
   f(x)=(60-2x)*x,当x=15时,有最大值450。
   450×4

 

9.现在共有100匹马跟100块石头,马分3种,大型马;中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
   6种结果(17,5,78)、(14,10,76)、(11,15,74)、(8,20,72)、(5,25,70)、(2,30,68)

 

10.一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块卖给另外一个人。问他赚了多少?
   2元

 

11.一个家庭有两个小孩,其中有一个是女孩,问另一个也是女孩的概率(假定生男生女的概率一样)
   1/3
样本空间为(男男)(女女)(男女)(女男)
A=(已知其中一个是女孩)=)(女女)(男女)(女男)
B=(另一个也是女孩)=(女女)
于是P(B/A)=P(AB)/P(A)=(1/4)/(3/4)=1/3

 

12. 12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重)
   12个时可以找出那个是重还是轻,13个时只能找出是哪个球,轻重不知。
  把球编为①②③④⑤⑥⑦⑧⑨⑩⑾⑿。(13个时编号为⒀)
  第一次称:先把①②③④与⑤⑥⑦⑧放天平两边,
    ㈠如相等,说明特别球在剩下4个球中。
      把①⑨与⑩⑾作第二次称量,
      ⒈如相等,说明⑿特别,把①与⑿作第三次称量即可判断是⑿是重还是轻
      ⒉如①⑨<⑩⑾说明要么是⑩⑾中有一个重的,要么⑨是轻的。
        把⑩与⑾作第三次称量,如相等说明⑨轻,不等可找出谁是重球。
      ⒊如①⑨>⑩⑾说明要么是⑩⑾中有一个轻的,要么⑨是重的。
        把⑩与⑾作第三次称量,如相等说明⑨重,不等可找出谁是轻球。
    ㈡如左边<右边,说明左边有轻的或右边有重的
      把①②⑤与③④⑥做第二次称量
      ⒈如相等,说明⑦⑧中有一个重,把①与⑦作第三次称量即可判断是⑦与⑧中谁是重球
      ⒉如①②⑤<③④⑥说明要么是①②中有一个轻的,要么⑥是重的。
        把①与②作第三次称量,如相等说明⑥重,不等可找出谁是轻球。
      ⒊如①②⑤>③④⑥说明要么是⑤是重的,要么③④中有一个是轻的。
        把③与④作第三次称量,如相等说明⑤重,不等可找出谁是轻球。
    ㈢如左边>右边,参照㈡相反进行。
  当13个球时,第㈠步以后如下进行。
    把①⑨与⑩⑾作第二次称量,
    ⒈如相等,说明⑿⒀特别,把①与⑿作第三次称量即可判断是⑿还是⒀特别,但判断不了轻重了。
    ⒉不等的情况参见第㈠步的⒉⒊

 

13. 1,11,21,1211,111221,下一个数是什么?

下行是对上一行的解释 所以新的应该是3个1 2个2 1个1 :312211

 

14. 烧一根不均匀的绳要用一个小时,如何用它来判断半个小时?烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?
(微软的笔试题)

一,一根绳子从两头烧,烧完就是半个小时。

二,一根要一头烧,一根从两头烧,两头烧完的时候(30分),将剩下的一根另一端点着,烧尽就是45分钟。再从两头点燃第三根,烧尽就是1时15分。

 

 

15. 有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?

两根香同时点燃,一根只点头部,另外一根把头尾一块点。当其中一根烧完的的时候,点燃剩下那根的另外一头,从这个时候开始到这根香烧尽的时间就是15分钟。

 

16一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?

我最烦这种数字加来乘去的题目了,不过还好这题不算太难。小孩的年龄显然应该是两小一大,或者三个都小,因为我们不能让经理七老八十了还能生个女儿下来。推来推去,也只有36这个数字有两种分解,一种1×6×6,另一种2×2×9。又因为只有一个女儿头发是黑的,那就应该是两小一大了,2×2×9。

 

 

17.有三个人去住旅馆,住三间房,每一间房10元,于是他们一共付给老板30元,第二天,老板觉得三间房只需要25元就够了于是叫小弟退回5元给三位客人,谁知小弟贪心,只退回每人1元,自己偷偷拿了2元,这样一来便等于那三位客人每人各花了9元,于是三个人一共花了27元,再加上小弟独吞了不2元,总共是29元。可是当初他们三个人一共付出30元,那么还有1元在哪里呢?

题目的算法太假了,这30块钱根本就不能那样算。实际上,三个人花了27块钱不假,但这里头已经包含小弟私吞的那2块钱。所以正确的算法应该是这27块加上老板找回他们的3块(从5块里头扣掉被私吞的2块),27+3=30。

18.有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?

把每双袜子拆了一人一只,刚好每个人就是八对。题意的误导之处在于根本没有要求两位盲人要得到完整的一对一对的袜子。

 

19.有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

这个简单,30×[s/(15+20)]=6/7*s,其中s是纽约和洛杉矶的距离。

 

20. 你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?

这个题目的前提是要知道每个没被污染的药丸的重量。把四个罐子从1~4编号,1号灌取一个药丸,2号取两个,三号取三个,四号取四个。称出来比正常的重量重多少,被污染的就是第几号药罐。

21. 你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

 

没啥好说的,4个。

 

22.对一批编号为1~100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

归根到底是求从1~100这些数的约数个数问题。只要约数的个数是奇数,这盏灯最后就是熄灭状态。只有完全平方数的约数个数才是奇数,所以最后熄灭的灯应该是1、4、9、16、25、36、49、64、81、100。

 

23. 想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

这道题目俺没想出来,看了答案才明白。。想象一下,如果一个镜子在你脚下,你看到的不就是上下颠倒了么?是对称轴的问题。

 

 

24. 一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

3个黑帽子。这道逻辑推理题很经典。有些答案说全是黑帽子,简直扯淡。按题意至少有一个黑帽子,如果只有一个的话,那个戴黑帽的人看到别人全是白的,自己肯定是黑的,第一次关灯就会自己扇耳光;如果是两个,第一次关灯没有人扇耳光,因为戴黑帽的人可以看到另外一个黑帽子,但是两个人都发现第一次关灯的时候对方没动静,于是判断自己肯定是黑的,第二次关灯就会扇自己耳光。以此类推,关几次灯,就有几个黑帽子,所以应该是3个黑帽子。

 

 

25. 两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

分别是3圈和1圈。不信的话自己拿俩硬币试试。这个题目也有答案给错的,说内部外部都一样,小圆都转2圈,这不对。我们考虑一个圆转了多少圈,并不是想当然的把圆周转过的距离除以周长,而应该用圆心转过的距离除以周长。在平地上转动实际上是一种特例,这个时候圆周转过的距离和圆心转过的距离相等。

 

26. 1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

40瓶。

 

 

27. 、假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?

小时候也见到过这种问题。关键在于自己必须拿到第94个球,才能保证拿到第100个球。类推上去,自己要先拿到第4个球,也就是100/(5+1)的余数。所以第一次拿4个球,以后不管对手拿几个球,你都保证每个回合两个人拿球总的个数是6,就可以得到第100个球。推而广之,如果有x个物品,每人每次最多取a个,如果x不是(1+a)的倍数,那么先取的人赢,他的取法是第一次取x/(1+a)的余数,接着保证两个人每次取的总数是(1+a);如果x是(1+a)的倍数,那么后取的人赢,他的取法是保证两个人每次去的总数是(1+a)。

 

28. 有50个球,你和你的对手轮流取,你先开始,每次最多取6个,最少取1个,问你怎么可以保证自己可以得到最后一个球。

 为了确保拿到最后一个球,那么如果我拿到了最后一个球,这时还剩49个,1+6=7,行了,答案出来了:我先开始拿,只拿一个球,接下来我的对手拿x个,我就拿7-x个,这样就可以保证我能拿到最后一个球。

 

29. 一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?

这道题比较好玩。我觉得应该这样,指着其中一条路问他们两个:这条是通往你们自己国家的路吗?如果是通往诚实国的路,两个人都会回答是;如果是通往说谎国的路,两个人都会回答不是。

 

30. 门外三个开关分别对应室内三盏灯,线路良好,在门外控制开关时候不能看到室内灯的情况,现在只允许进门一次,确定开关和灯的对应关系?

假设开始都处于关闭状态,先按一个开关点亮一盏灯,过一段时间,把这个开关关掉,再按另一个开关打开另一盏灯,此时进门,灯泡有三种状态:亮、不亮+冰凉、不亮+烫手,由此可以得出判断。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值