#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
/*
给定数列A,求解数列B有多少种
数列B满足 1<=Bi<=Ai,且对于任意区间[l,r],gcd(Bl,Bl+1,...Br)>=2
*/
typedef long long LL;
const int maxn=1e5+5;
const int mod=1e9+7;
bool check[maxn];
int prime[maxn];
int mu[maxn];
//莫比乌斯函数
void Moblus()
{
memset(check,false,sizeof(check));
mu[1]=1;
int tot=0;
for(int i=2;i<=maxn;i++)
{
if(!check[i])
{
prime[tot++]=i;
mu[i]=-1;
}
for(int j=0;j<tot;j++)
{
if(i*prime[j]>maxn) break;
check[i*prime[j]]=true;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
else
{
mu[i*prime[j]]= -mu[i];
}
}
}
}
//快速幂
LL pow_mod(LL a, LL n)
{
LL ret=1;
LL tmp=a%mod;
while(n)
{
if(n&1) ret=ret*tmp%mod;
tmp=tmp*tmp%mod;
n>>=1;
}
return ret;
}
int n;
int sum[maxn];
int main()
{
Moblus();
int T;
scanf("%d",&T);
int kase=1;
while(T--)
{
scanf("%d",&n);
int x;
int mx=0;
memset(sum,0,sizeof(sum));
for(int i=0;i<n;i++)
{
scanf("%d",&x);
sum[x]++;
mx=max(mx,x);
}
for(int i=1;i<=mx;i++)
{
sum[i]=sum[i]+sum[i-1];
//printf("sum=%d\n",sum[i]);
}
LL ans=0;
for(int i=2;i<=mx;i++)
{
if(sum[i-1]>0)
{
break;
}
LL tmp=1;
for(int j=i;j<=mx;j+=i)
{
int k=sum[min(j+i-1,mx)]-sum[j-1];
tmp=tmp*pow_mod(j/i,k)%mod;
}
ans=(ans+tmp*mu[i]*-1)%mod;
}
printf("Case #%d: %lld\n",kase++,(ans%mod+mod)%mod);
}
return 0;
}
HDU6053 TrickGCD(莫比乌斯函数)
最新推荐文章于 2021-07-08 19:01:28 发布