hdu 4597 play game

本文介绍了一个结合博弈论思想的动态规划问题解决方案,通过记忆化搜索减少重复计算,实现高效的递归求解策略。文章提供了完整的代码示例,展示了如何在两个玩家之间进行最优策略选择。

有点博弈论味道的动态规划,这个题目再次凸显了记忆化搜索的便利之处,找好边界后接着就是深搜的写法了。由于每次只能取4个位置的一个位置,并且要考虑到对手怎么取,由于对手的策略是相同的,所以他也是从4个里面取出一个。这个题目关键是对手的策略是和你相同的。

#include<iostream>
#include<cstring>
#include<stdio.h>
using namespace std;
int dp[25][25][25][25];
int sum1[25],sum2[25];
int card1[25],card2[25];
int n;
int maxi(int a,int b)
{
	if(a>b)
		return a;
	return b;
}
int dfs(int top1,int end1,int top2,int end2)
{
	if(dp[top1][end1][top2][end2]>=0)
		return dp[top1][end1][top2][end2];
	if(top1>end1&&top2>end2)
	{
		dp[top1][end1][top2][end2]=0;
		return dp[top1][end1][top2][end2];
	}
	int sum,ans;
	sum=0;
	ans=0;
	if(top1<=end1)
		sum=sum+sum1[end1]-sum1[top1-1];
	if(top2<=end2)
		sum=sum+sum2[end2]-sum2[top2-1];
	if(top1<=end1)
	{
		ans=maxi(ans,sum-dfs(top1+1,end1,top2,end2));
		ans=maxi(ans,sum-dfs(top1,end1-1,top2,end2));
	}
	if(top2<=end2)
	{
		ans=maxi(ans,sum-dfs(top1,end1,top2+1,end2));
		ans=maxi(ans,sum-dfs(top1,end1,top2,end2-1));
	}
	dp[top1][end1][top2][end2]=ans;
	return ans;
}
int main()
{
	int t,i;
	cin>>t;
	while(t--)
	{
		cin>>n;
		for(i=1;i<=n;i++)
			cin>>card1[i];
		for(i=1;i<=n;i++)
			cin>>card2[i];
		memset(dp,-1,sizeof(dp));
		sum1[0]=0;
		sum2[0]=0;
		for(i=1;i<=n;i++)
		{
			sum1[i]=sum1[i-1]+card1[i];
			sum2[i]=sum2[i-1]+card2[i];
		}
		
		cout<<dfs(1,n,1,n)<<endl;
	}
	return 0;
}
		



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值