椭圆3维空间方程式


接下来,利用Matlab软件对三维空间中圆的参数方程进行测试。代码如下:

n=[1 1 1]; %法向量n
r=1; %圆的半径为1
c=[1 1 1]; %圆心的坐标
theta=(0:2*pi/100:2*pi)'; %theta角从0到2*pi
a=cross(n,[1 0 0]); %n与i叉乘,求取a向量
if ~any(a) %如果a为零向量,将n与j叉乘
    a=cross(n,[0 1 0]);
end
b=cross(n,a); %求取b向量
a=a/norm(a); %单位化a向量
b=b/norm(b); %单位化b向量

c1=c(1)*ones(size(theta,1),1);
c2=c(2)*ones(size(theta,1),1);
c3=c(3)*ones(size(theta,1),1);

x=c1+r*a(1)*cos(theta)+r*b(1)*sin(theta);%圆上各点的x坐标
y=c2+r*a(2)*cos(theta)+r*b(2)*sin(theta);%圆上各点的y坐标
z=c3+r*a(3)*cos(theta)+r*b(3)*sin(theta);%圆上各点的z坐标

plot3(x,y,z)
xlabel('x轴')
ylabel('y轴')
zlabel('z轴')

Matlab运行结果如下图:
 

1、其中满足u垂直v垂直n(椭圆的法向量),a为椭圆的长边半径,b为椭圆的短边半径

     (Cx,Cy,Cz)是中心点坐标

好的,您可以使用有限差分法来求解该方程。首先,将区域离散化为网格,然后使用中心差分格式来近似求解拉普拉斯算子Δu。具体来说,对于一个二维网格,可以使用以下公式来计算Δu: Δu(i,j) ≈ (u(i-1,j) - 2u(i,j) + u(i+1,j)) / Δx^2 + (u(i,j-1) - 2u(i,j) + u(i,j+1)) / Δy^2 其中Δx和Δy分别是网格的间距。然后,将该公式代入原方程,得到以下离散化的方程: -(u(i-1,j) - 2u(i,j) + u(i+1,j)) / Δx^2 - (u(i,j-1) - 2u(i,j) + u(i,j+1)) / Δy^2 + u(i,j)^3 = 1 将上式移项,得到: u(i,j)^3 - (u(i-1,j) + u(i+1,j)) / Δx^2 - (u(i,j-1) + u(i,j+1)) / Δy^2 = 1 + 2u(i,j) / Δx^2 + 2u(i,j) / Δy^2 然后,您可以使用迭代方法(如Jacobi或Gauss-Seidel)来解决该方程组。在每个迭代步骤中,您需要更新网格上的每个点,直到解收敛。最后,您可以使用中心差分格式计算u对g的偏导数。 但是,注意到您要求的是在u对g的偏导数等于0的条件下求解该方程,因此需要对方程做出一些修改。我们可以引入一个新的变量v,令u对g的偏导数等于0,即: ∂u/∂g = 0 根据链式法则,有: ∂u/∂g = (∂u/∂x) / (∂g/∂x) 因此,我们可以将u和g之间的关系表示为: u(i,j) = v(i,j) * g(i,j) 然后,对上面的方程进行求导,得到: Δv(i,j) * g(i,j) + 2 * (∂v(i,j)/∂x) * (∂g(i,j)/∂x) / Δx^2 + 2 * (∂v(i,j)/∂y) * (∂g(i,j)/∂y) / Δy^2 + 3 * v(i,j)^2 * g(i,j)^2 * (∂v(i,j)/∂x) / (∂g(i,j)/∂x) = 0 然后,将上式代入原方程,得到: -(Δv(i,j) * g(i,j) + 2 * (∂v(i,j)/∂x) * (∂g(i,j)/∂x) / Δx^2 + 2 * (∂v(i,j)/∂y) * (∂g(i,j)/∂y) / Δy^2 + 3 * v(i,j)^2 * g(i,j)^2 * (∂v(i,j)/∂x) / (∂g(i,j)/∂x)) + v(i,j)^3 * g(i,j)^3 = 1 然后,您可以使用迭代方法(如Jacobi或Gauss-Seidel)来解决该方程组。在每个迭代步骤中,您需要更新网格上的每个点,直到解收敛。最后,您可以使用中心差分格式计算v对x和y的偏导数,然后再计算u对g的偏导数。 希望对您有所帮助!
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值